danepitkin commented on code in PR #35656:
URL: https://github.com/apache/arrow/pull/35656#discussion_r1212301675
##########
python/pyarrow/types.pxi:
##########
@@ -1122,6 +1150,19 @@ cdef class DurationType(DataType):
"""
return timeunit_to_string(self.duration_type.unit())
+ def to_pandas_dtype(self):
+ """
+ Return the equivalent NumPy / Pandas dtype.
+
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> d = pa.duration('ms')
+ >>> d.to_pandas_dtype()
+ timedelta64[ms]
+ """
+ return _get_pandas_type(_Type_TIMESTAMP, self.unit)
Review Comment:
Great catch! You're correct that this isn't tested yet.
##########
python/pyarrow/types.pxi:
##########
@@ -40,10 +42,20 @@ cdef dict _pandas_type_map = {
_Type_HALF_FLOAT: np.float16,
_Type_FLOAT: np.float32,
_Type_DOUBLE: np.float64,
- _Type_DATE32: np.dtype('datetime64[ns]'),
- _Type_DATE64: np.dtype('datetime64[ns]'),
- _Type_TIMESTAMP: np.dtype('datetime64[ns]'),
- _Type_DURATION: np.dtype('timedelta64[ns]'),
+ _Type_DATE32: np.dtype('datetime64[D]'),
Review Comment:
Thank you! Numpy supports [D]ay, but pandas does not.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]