bkietz commented on code in PR #40365:
URL: https://github.com/apache/arrow/pull/40365#discussion_r1514860645
##########
cpp/src/arrow/record_batch_test.cc:
##########
@@ -705,17 +705,12 @@ TEST_F(TestRecordBatch, ToTensorSupportedNaN) {
std::vector<int64_t> shape = {9, 2};
const int64_t f32_size = sizeof(float);
std::vector<int64_t> f_strides = {f32_size, f32_size * shape[0]};
- std::vector<float> f_values = {
- static_cast<float>(NAN), 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40,
- static_cast<float>(NAN), 60, 70, 80, 90};
- auto data = Buffer::Wrap(f_values);
-
- std::shared_ptr<Tensor> tensor_expected;
- ASSERT_OK_AND_ASSIGN(tensor_expected, Tensor::Make(float32(), data, shape,
f_strides));
+ std::shared_ptr<Tensor> tensor_expected = TensorFromJSON(
+ float32(), shape,
+ "[NaN, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, NaN, 60, 70, 80, 90]",
f_strides);
Review Comment:
I'd say allowing for optional dimension permutations is the best way to
support non-row-major strides (my first thought for handling that was an enum
but I like the permutation idea better).
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]