westonpace commented on a change in pull request #11911: URL: https://github.com/apache/arrow/pull/11911#discussion_r770928446
########## File path: python/pyarrow/tests/test_dataset.py ########## @@ -3621,6 +3621,204 @@ def compare_tables_ignoring_order(t1, t2): assert not extra_file.exists() +def _generate_random_int_array(size=4, min=1, max=10): + return np.random.randint(min, max, size) + + +def _generate_data_and_columns(num_of_columns, records_per_row, + unique_records=None): + data = [] + column_names = [] + if unique_records is None: + unique_records = records_per_row + for i in range(num_of_columns): + data.append(_generate_random_int_array(size=records_per_row, + min=1, + max=unique_records)) + column_names.append("c" + str(i)) + return data, column_names + + +def _get_num_of_files_generated(base_directory): + file_dirs = os.listdir(base_directory) + number_of_files = 0 + for _, file_dir in enumerate(file_dirs): + sub_dir_path = base_directory / file_dir + number_of_files += len(os.listdir(sub_dir_path)) + return number_of_files + + +def _get_compare_pair(data_source, record_batch): + num_of_files_generated = _get_num_of_files_generated( + base_directory=data_source) + number_of_unique_rows = len(pa.compute.unique(record_batch[0])) + return num_of_files_generated, number_of_unique_rows + + +def test_write_dataset_max_rows_per_file(tempdir): + directory = tempdir / 'ds' + max_rows_per_file = 10 + max_rows_per_group = 10 + num_of_columns = 2 + records_per_row = 35 + + data, column_names = _generate_data_and_columns(num_of_columns, + records_per_row) + + record_batch = pa.record_batch(data=data, names=column_names) + + sub_directory = directory / 'onewrite' + + ds.write_dataset(record_batch, sub_directory, format="parquet", + max_rows_per_file=max_rows_per_file, + max_rows_per_group=max_rows_per_group) + + files_in_dir = os.listdir(sub_directory) + + # number of partitions with max_rows and the partition with the remainder + expected_partitions = len(data[0]) // max_rows_per_file + 1 + expected_row_combination = [max_rows_per_file + for i in range(expected_partitions - 1)] \ + + [len(data[0]) - ((expected_partitions - 1) * max_rows_per_file)] + + # test whether the expected amount of files are written + assert len(files_in_dir) == expected_partitions + + # compute the number of rows per each file written + result_row_combination = [] + for _, f_file in enumerate(files_in_dir): + f_path = sub_directory / str(f_file) + dataset = ds.dataset(f_path, format="parquet") + result_row_combination.append(dataset.to_table().shape[0]) + + # test whether the generated files have the expected number of rows + assert len(expected_row_combination) == len(result_row_combination) + assert sum(expected_row_combination) == sum(result_row_combination) + + +def test_write_dataset_min_rows_per_group(tempdir): + directory = tempdir / 'ds' + min_rows_per_group = 10 + max_rows_per_group = 20 + num_of_columns = 2 + records_per_row = 49 + unique_records = 5 Review comment: Do you mean bridging our internal async methods with something like python's concurrent.futures? It could be useful but I wouldn't bother with it until there is a concrete need / ask for it. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org