damccorm commented on code in PR #28777:
URL: https://github.com/apache/beam/pull/28777#discussion_r1346315930


##########
examples/notebooks/beam-ml/automatic_model_refresh.ipynb:
##########
@@ -1,605 +1,668 @@
 {
-       "nbformat": 4,
-       "nbformat_minor": 0,
-       "metadata": {
-               "colab": {
-                       "provenance": []
-               },
-               "kernelspec": {
-                       "name": "python3",
-                       "display_name": "Python 3"
-               },
-               "language_info": {
-                       "name": "python"
-               }
-       },
-       "cells": [{
-                       "cell_type": "code",
-                       "source": [
-                               "# @title ###### Licensed to the Apache 
Software Foundation (ASF), Version 2.0 (the \"License\")\n",
-                               "\n",
-                               "# Licensed to the Apache Software Foundation 
(ASF) under one\n",
-                               "# or more contributor license agreements. See 
the NOTICE file\n",
-                               "# distributed with this work for additional 
information\n",
-                               "# regarding copyright ownership. The ASF 
licenses this file\n",
-                               "# to you under the Apache License, Version 2.0 
(the\n",
-                               "# \"License\"); you may not use this file 
except in compliance\n",
-                               "# with the License. You may obtain a copy of 
the License at\n",
-                               "#\n",
-                               "#   
http://www.apache.org/licenses/LICENSE-2.0\n";,
-                               "#\n",
-                               "# Unless required by applicable law or agreed 
to in writing,\n",
-                               "# software distributed under the License is 
distributed on an\n",
-                               "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR 
CONDITIONS OF ANY\n",
-                               "# KIND, either express or implied. See the 
License for the\n",
-                               "# specific language governing permissions and 
limitations\n",
-                               "# under the License"
-                       ],
-                       "metadata": {
-                               "cellView": "form",
-                               "id": "OsFaZscKSPvo"
-                       },
-                       "execution_count": null,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "# Update ML models in running pipelines\n",
-                               "\n",
-                               "<table align=\"left\">\n",
-                               "  <td>\n",
-                               "    <a target=\"_blank\" 
href=\"https://colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/automatic_model_refresh.ipynb\";><img
 
src=\"https://raw.githubusercontent.com/google/or-tools/main/tools/colab_32px.png\";
 />Run in Google Colab</a>\n",
-                               "  </td>\n",
-                               "  <td>\n",
-                               "    <a target=\"_blank\" 
href=\"https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/automatic_model_refresh.ipynb\";><img
 
src=\"https://raw.githubusercontent.com/google/or-tools/main/tools/github_32px.png\";
 />View source on GitHub</a>\n",
-                               "  </td>\n",
-                               "</table>\n"
-                       ],
-                       "metadata": {
-                               "id": "ZUSiAR62SgO8"
-                       }
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "This notebook demonstrates how to perform 
automatic model updates without stopping your Apache Beam pipeline.\n",
-                               "You can use side inputs to update your model 
in real time, even while the Apache Beam pipeline is running. The side input is 
passed in a `ModelHandler` configuration object. You can update the model 
either by leveraging one of Apache Beam's provided patterns, such as the 
`WatchFilePattern`, or by configuring a custom side input `PCollection` that 
defines the logic for the model update.\n",
-                               "\n",
-                               "The pipeline in this notebook uses a 
RunInference `PTransform` with TensorFlow machine learning (ML) models to run 
inference on images. To update the model, it uses a side input `PCollection` 
that emits `ModelMetadata`.\n",
-                               "For more information about side inputs, see 
the [Side 
inputs](https://beam.apache.org/documentation/programming-guide/#side-inputs) 
section in the Apache Beam Programming Guide.\n",
-                               "\n",
-                               "This example uses `WatchFilePattern` as a side 
input. `WatchFilePattern` is used to watch for file updates that match the 
`file_pattern` based on timestamps. It emits the latest `ModelMetadata`, which 
is used in the RunInference `PTransform` to automatically update the ML model 
without stopping the Apache Beam pipeline.\n"
-                       ],
-                       "metadata": {
-                               "id": "tBtqF5UpKJNZ"
-                       }
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "## Before you begin\n",
-                               "Install the dependencies required to run this 
notebook.\n",
-                               "\n",
-                               "To use RunInference with side inputs for 
automatic model updates, use Apache Beam version 2.46.0 or later."
-                       ],
-                       "metadata": {
-                               "id": "SPuXFowiTpWx"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "execution_count": 1,
-                       "metadata": {
-                               "id": "1RyTYsFEIOlA",
-                               "outputId": 
"0e6b88a7-82d8-4d94-951c-046a9b8b7abb",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";
-                               }
-                       },
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }],
-                       "source": [
-                               "!pip install apache_beam[gcp]>=2.46.0 
--quiet\n",
-                               "!pip install tensorflow\n",
-                               "!pip install tensorflow_hub"
-                       ]
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "# Imports required for the notebook.\n",
-                               "import logging\n",
-                               "import time\n",
-                               "from typing import Iterable\n",
-                               "from typing import Tuple\n",
-                               "\n",
-                               "import apache_beam as beam\n",
-                               "from 
apache_beam.examples.inference.tensorflow_imagenet_segmentation import 
PostProcessor\n",
-                               "from 
apache_beam.examples.inference.tensorflow_imagenet_segmentation import 
read_image\n",
-                               "from apache_beam.ml.inference.base import 
PredictionResult\n",
-                               "from apache_beam.ml.inference.base import 
RunInference\n",
-                               "from 
apache_beam.ml.inference.tensorflow_inference import TFModelHandlerTensor\n",
-                               "from apache_beam.ml.inference.utils import 
WatchFilePattern\n",
-                               "from apache_beam.options.pipeline_options 
import GoogleCloudOptions\n",
-                               "from apache_beam.options.pipeline_options 
import PipelineOptions\n",
-                               "from apache_beam.options.pipeline_options 
import SetupOptions\n",
-                               "from apache_beam.options.pipeline_options 
import StandardOptions\n",
-                               "from apache_beam.transforms.periodicsequence 
import PeriodicImpulse\n",
-                               "import numpy\n",
-                               "from PIL import Image\n",
-                               "import tensorflow as tf"
-                       ],
-                       "metadata": {
-                               "id": "Rs4cwwNrIV9H"
-                       },
-                       "execution_count": 2,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "# Authenticate to your Google Cloud 
account.\n",
-                               "from google.colab import auth\n",
-                               "auth.authenticate_user()"
-                       ],
-                       "metadata": {
-                               "id": "jAKpPcmmGm03"
-                       },
-                       "execution_count": 3,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "## Configure the runner\n",
-                               "\n",
-                               "This pipeline uses the Dataflow Runner. To run 
the pipeline, you need to complete the following tasks:\n",
-                               "\n",
-                               "* Ensure that you have all the required 
permissions to run the pipeline on Dataflow.\n",
-                               "* Configure the pipeline options for the 
pipeline to run on Dataflow. Make sure the pipeline is using streaming mode.\n",
-                               "\n",
-                               "In the following code, replace `BUCKET_NAME` 
with the the name of your Cloud Storage bucket."
-                       ],
-                       "metadata": {
-                               "id": "ORYNKhH3WQyP"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "options = PipelineOptions()\n",
-                               "options.view_as(StandardOptions).streaming = 
True\n",
-                               "\n",
-                               "# Provide required pipeline options for the 
Dataflow Runner.\n",
-                               "options.view_as(StandardOptions).runner = 
\"DataflowRunner\"\n",
-                               "\n",
-                               "# Set the project to the default project in 
your current Google Cloud environment.\n",
-                               "options.view_as(GoogleCloudOptions).project = 
'your-project'\n",
-                               "\n",
-                               "# Set the Google Cloud region that you want to 
run Dataflow in.\n",
-                               "options.view_as(GoogleCloudOptions).region = 
'us-central1'\n",
-                               "\n",
-                               "# IMPORTANT: Replace BUCKET_NAME with the the 
name of your Cloud Storage bucket.\n",
-                               "dataflow_gcs_location = 
\"gs://BUCKET_NAME/tmp/\"\n",
-                               "\n",
-                               "# The Dataflow staging location. This location 
is used to stage the Dataflow pipeline and the SDK binary.\n",
-                               
"options.view_as(GoogleCloudOptions).staging_location = '%s/staging' % 
dataflow_gcs_location\n",
-                               "\n",
-                               "# The Dataflow temp location. This location is 
used to store temporary files or intermediate results before outputting to the 
sink.\n",
-                               
"options.view_as(GoogleCloudOptions).temp_location = '%s/temp' % 
dataflow_gcs_location\n",
-                               "\n"
-                       ],
-                       "metadata": {
-                               "id": "wWjbnq6X-4uE"
-                       },
-                       "execution_count": 4,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "Install the `tensorflow` and `tensorflow_hub` 
dependencies on Dataflow. Use the `requirements_file` pipeline option to pass 
these dependencies."
-                       ],
-                       "metadata": {
-                               "id": "HTJV8pO2Wcw4"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "# In a requirements file, define the 
dependencies required for the pipeline.\n",
-                               "deps_required_for_pipeline = 
['tensorflow>=2.12.0', 'tensorflow-hub>=0.10.0', 'Pillow>=9.0.0']\n",
-                               "requirements_file_path = 
'./requirements.txt'\n",
-                               "# Write the dependencies to the requirements 
file.\n",
-                               "with open(requirements_file_path, 'w') as 
f:\n",
-                               "  for dep in deps_required_for_pipeline:\n",
-                               "    f.write(dep + '\\n')\n",
-                               "\n",
-                               "# Install the pipeline dependencies on 
Dataflow.\n",
-                               
"options.view_as(SetupOptions).requirements_file = requirements_file_path"
-                       ],
-                       "metadata": {
-                               "id": "lEy4PkluWbdm"
-                       },
-                       "execution_count": 5,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "## Use the TensorFlow model handler\n",
-                               " This example uses `TFModelHandlerTensor` as 
the model handler and the `resnet_101` model trained on 
[ImageNet](https://www.image-net.org/).\n",
-                               "\n",
-                               " Download the model from [Google Cloud 
Storage](https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet101_weights_tf_dim_ordering_tf_kernels.h5)
 (link downloads the model), and place it in the directory that you want to use 
to update your model.\n",
-                               "\n",
-                               "In the following code, replace `BUCKET_NAME` 
with the the name of your Cloud Storage bucket."
-                       ],
-                       "metadata": {
-                               "id": "_AUNH_GJk_NE"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "model_handler = TFModelHandlerTensor(\n",
-                               "    
model_uri=\"gs://BUCKET_NAME/resnet101_weights_tf_dim_ordering_tf_kernels.h5\")"
-                       ],
-                       "metadata": {
-                               "id": "kkSnsxwUk-Sp"
-                       },
-                       "execution_count": 6,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "## Preprocess images\n",
-                               "\n",
-                               "Use `preprocess_image` to run the inference, 
read the image, and convert the image to a TensorFlow tensor."
-                       ],
-                       "metadata": {
-                               "id": "tZH0r0sL-if5"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "def preprocess_image(image_name, 
image_dir):\n",
-                               "  img = tf.keras.utils.get_file(image_name, 
image_dir + image_name)\n",
-                               "  img = Image.open(img).resize((224, 224))\n",
-                               "  img = numpy.array(img) / 255.0\n",
-                               "  img_tensor = 
tf.cast(tf.convert_to_tensor(img[...]), dtype=tf.float32)\n",
-                               "  return img_tensor"
-                       ],
-                       "metadata": {
-                               "id": "dU5imgTt-8Ne"
-                       },
-                       "execution_count": 7,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "class PostProcessor(beam.DoFn):\n",
-                               "  \"\"\"Process the PredictionResult to get 
the predicted label.\n",
-                               "  Returns predicted label.\n",
-                               "  \"\"\"\n",
-                               "  def process(self, element: PredictionResult) 
-> Iterable[Tuple[str, str]]:\n",
-                               "    predicted_class = 
numpy.argmax(element.inference, axis=-1)\n",
-                               "    labels_path = tf.keras.utils.get_file(\n",
-                               "        'ImageNetLabels.txt',\n",
-                               "        
'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt'
  # pylint: disable=line-too-long\n",
-                               "    )\n",
-                               "    imagenet_labels = 
numpy.array(open(labels_path).read().splitlines())\n",
-                               "    predicted_class_name = 
imagenet_labels[predicted_class]\n",
-                               "    yield predicted_class_name.title(), 
element.model_id"
-                       ],
-                       "metadata": {
-                               "id": "6V5tJxO6-gyt"
-                       },
-                       "execution_count": 8,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "# Define the pipeline object.\n",
-                               "pipeline = beam.Pipeline(options=options)"
-                       ],
-                       "metadata": {
-                               "id": "GpdKk72O_NXT",
-                               "outputId": 
"bcbaa8a6-0408-427a-de9e-78a6a7eefd7b",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 400
-                               }
-                       },
-                       "execution_count": 9,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "Next, review the pipeline steps and examine 
the code.\n",
-                               "\n",
-                               "### Pipeline steps\n"
-                       ],
-                       "metadata": {
-                               "id": "elZ53uxc_9Hv"
-                       }
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "1. Create a `PeriodicImpulse` transform, which 
emits output every `n` seconds. The `PeriodicImpulse` transform generates an 
infinite sequence of elements with a given runtime interval.\n",
-                               "\n",
-                               "   In this example, `PeriodicImpulse` mimics 
the Pub/Sub source. Because the inputs in a streaming pipeline arrive in 
intervals, use `PeriodicImpulse` to output elements at `m` intervals.\n",
-                               "To learn more about `PeriodicImpulse`, see the 
[`PeriodicImpulse` 
code](https://github.com/apache/beam/blob/9c52e0594d6f0e59cd17ee005acfb41da508e0d5/sdks/python/apache_beam/transforms/periodicsequence.py#L150)."
-                       ],
-                       "metadata": {
-                               "id": "305tkV2sAD-S"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "start_timestamp = time.time() # start 
timestamp of the periodic impulse\n",
-                               "end_timestamp = start_timestamp + 60 * 20 # 
end timestamp of the periodic impulse (will run for 20 minutes).\n",
-                               "main_input_fire_interval = 60 # interval in 
seconds at which the main input PCollection is emitted.\n",
-                               "side_input_fire_interval = 60 # interval in 
seconds at which the side input PCollection is emitted.\n",
-                               "\n",
-                               "periodic_impulse = (\n",
-                               "      pipeline\n",
-                               "      | \"MainInputPcoll\" >> 
PeriodicImpulse(\n",
-                               "          start_timestamp=start_timestamp,\n",
-                               "          stop_timestamp=end_timestamp,\n",
-                               "          
fire_interval=main_input_fire_interval))"
-                       ],
-                       "metadata": {
-                               "id": "vUFStz66_Tbb",
-                               "outputId": 
"39f2704b-021e-4d41-fce3-a2fac90a5bad",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 133
-                               }
-                       },
-                       "execution_count": 10,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "2. To read and preprocess the images, use the 
`read_image` function. This example uses `Cat-with-beanie.jpg` for all 
inferences.\n",
-                               "\n",
-                               "  **Note**: Image used for prediction is 
licensed in CC-BY. The creator is listed in the 
[LICENSE.txt](https://storage.googleapis.com/apache-beam-samples/image_captioning/LICENSE.txt)
 file."
-                       ],
-                       "metadata": {
-                               "id": "8-sal2rFAxP2"
-                       }
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               
"![download.png](
 
PIHLKFWJAb5AMFQxFQHJQIJUNCSAIVQOugUqgcqobqoWboW+godBq6AA1Dt6BRaBL6FXoHIzAJpsFasBFsBbNgTzgIjoQXwcnwMjgfLoK3wJVwA3wQ7oRPw5fgEVgKP4GnEYAQETqiizARFsJGQpF4JAkRIauQEqQCaUDakB6kH7mKSJGnyFsUBkVFMVBMlAvKHxWF4qKWoVahNqOqUQdQnag+1FXUKGoK9RFNRmuizdHO6AB0LDoZnYsuRlegm9Ad6LPoEfQ4+hUGg6FjjDGOGH9MHCYVswKzGbMb0445hRnGjGGmsVisOtYc64oNxXKwYmwxtgp7EHsSewU7jn2DI+J0cLY4X1w8TogrxFXgWnAncFdwE7gZvBLeEO+MD8Xz8MvxZfhGfA9+CD+OnyEoE4wJroRIQiphLaGS0EY4S7hLeEEkEvWITsRwooC4hlhJPEQ8TxwlviVRSGYkNimBJCFtIe0nnSLdIr0gk8lGZA9yPFlM3kJuJp8h3ye/UaAqWCoEKPAUVivUKHQqXFF4pohXNFT0VFysmK9YoXhEcUjxqRJeyUiJrcRRWqVUo3RU6YbStDJV2UY5VDlDebNyi/IF5UcULMWI4kPhUYoo+yhnKGNUhKpPZVO51HXURupZ6jgNQzOmBdBSaaW0b2iDtCkVioqdSrRKnkqNynEVKR2hG9ED6On0Mvph+nX6O1UtVU9Vvuom1TbVK6qv1eaoeajx1UrU2tVG1N6pM9R91NPUt6l3qd/TQGmYaYRr5Grs0Tir8XQObY7LHO6ckjmH59zWhDXNNCM0V2ju0xzQnNbS1vLTytKq0jqj9VSbru2hnaq9Q/uE9qQOVcdNR6CzQ+ekzmOGCsOTkc6oZPQxpnQ1df11Jbr1uoO6M3rGelF6hXrtevf0Cfos/ST9Hfq9+lMGOgYhBgUGrQa3DfGGLMMUw12G/YavjYyNYow2GHUZPTJWMw4wzjduNb5rQjZxN1lm0mByzRRjyjJ
 
NM91tetkMNrM3SzGrMRsyh80dzAXmu82HLdAWThZCiwaLG0wS05OZw2xljlrSLYMtCy27LJ9ZGVjFW22z6rf6aG1vnW7daH3HhmITaFNo02Pzq62ZLde2xvbaXPJc37mr53bPfW5nbse322N3055qH2K/wb7X/oODo4PIoc1h0tHAMdGx1vEGi8YKY21mnXdCO3k5rXY65vTW2cFZ7HzY+RcXpkuaS4vLo3nG8/jzGueNueq5clzrXaVuDLdEt71uUnddd457g/sDD30PnkeTx4SnqWeq50HPZ17WXiKvDq/XbGf2SvYpb8Tbz7vEe9CH4hPlU+1z31fPN9m31XfKz95vhd8pf7R/kP82/xsBWgHcgOaAqUDHwJWBfUGkoAVB1UEPgs2CRcE9IXBIYMj2kLvzDecL53eFgtCA0O2h98KMw5aFfR+OCQ8Lrwl/GGETURDRv4C6YMmClgWvIr0iyyLvRJlESaJ6oxWjE6Kbo1/HeMeUx0hjrWJXxl6K04gTxHXHY+Oj45vipxf6LNy5cDzBPqE44foi40V5iy4s1licvvj4EsUlnCVHEtGJMYktie85oZwGzvTSgKW1S6e4bO4u7hOeB28Hb5Lvyi/nTyS5JpUnPUp2Td6ePJninlKR8lTAFlQLnqf6p9alvk4LTduf9ik9Jr09A5eRmHFUSBGmCfsytTPzMoezzLOKs6TLnJftXDYlChI1ZUPZi7K7xTTZz9SAxESyXjKa45ZTk/MmNzr3SJ5ynjBvYLnZ8k3LJ/J9879egVrBXdFboFuwtmB0pefK+lXQqqWrelfrry5aPb7Gb82BtYS1aWt/KLQuLC98uS5mXU+RVtGaorH1futbixWKRcU3NrhsqNuI2ijYOLhp7qaqTR9LeCUXS61LK0rfb+ZuvviVzVeVX33akrRlsMyhbM9WzFbh1uvb3LcdKFcuzy8f2x6yvXMHY0fJjpc7l+y8UGFXUbeLsEuyS1oZXNldZVC1tep9
 
dUr1SI1XTXutZu2m2te7ebuv7PHY01anVVda926vYO/Ner/6zgajhop9mH05+x42Rjf2f836urlJo6m06cN+4X7pgYgDfc2Ozc0tmi1lrXCrpHXyYMLBy994f9Pdxmyrb6e3lx4ChySHHn+b+O31w0GHe4+wjrR9Z/hdbQe1o6QT6lzeOdWV0iXtjusePhp4tLfHpafje8vv9x/TPVZzXOV42QnCiaITn07mn5w+lXXq6enk02O9S3rvnIk9c60vvG/wbNDZ8+d8z53p9+w/ed71/LELzheOXmRd7LrkcKlzwH6g4wf7HzoGHQY7hxyHui87Xe4Znjd84or7ldNXva+euxZw7dLI/JHh61HXb95IuCG9ybv56Fb6ree3c27P3FlzF3235J7SvYr7mvcbfjT9sV3qID0+6j068GDBgztj3LEnP2X/9H686CH5YcWEzkTzI9tHxyZ9Jy8/Xvh4/EnWk5mnxT8r/1z7zOTZd794/DIwFTs1/lz0/NOvm1+ov9j/0u5l73TY9P1XGa9mXpe8UX9z4C3rbf+7mHcTM7nvse8rP5h+6PkY9PHup4xPn34D94Tz+6TMXDkAAQAASURBVHichP3Xt2xJeh+IfV9EbJs+8/hzvalbt3x1tQe70WgSAAnQDClySGo4miXxbV70oLX0b0hr6UEPkkZrRmuRHJrhiAAJEoYwDaIb7dDl63pzzr3Hn/SZ20TEp4cwe+e5RSq7+p4020R88YvfZyM2/rN/9zsMERAAgAgAABEBAADcH/t39Ut/MCABIBIRgL0OIhIRIgIRIgAgubPMO3MUoX1P5kJE1V0QQWtg6C9KRBcaYP+PSEQEhHChnQSABAQEgIgIQIT2eEB3O+1awMwJ/nxC00CC//8vc1bVPgJ/Ipo2ABARs6Kyn22/AAgIEY1k3O3Inou+D/Y3K9gvawTCRVEQuS4wrLXKtsi33bZKmxPJDgfU5I5V27B2Cd8OTVZkHhdE2ouydiBBb
 
Sjt+1Upk/vB/BVGMmgHnGzLDODMsPqPtfFAspgjcPK4iGvzHpFIuzv4MXCDY2/nYe0HAAEI0c4D/6sTKVENjgTMSXlFHnYc0UCVABmiF3c1Ydz40MooVB+qMas65GaWux4gkiZEtOCwLQRw6ERE8211LS8tRNDmW6yBD8HInqpbmIbY8UIrPCsef6wfXyAgI3QAIIsgK2QkM9DaSd53zQqPwLcEEQE0EFY0U8nCDiAB1qQO1a0MTJlFnAcUMjKD4MZ/RS5oIWxELTwy0FEa1DBOfgo5jJKdI4YgbfcJ7YXRCsl1zw6UQ4oXMZHrC/l54W9UcWrVNqBao9HPInBU5KYu1eRMrrNYURzWoWbpybUKyE2SCql2kLz47Im0Ipn6qNUmT4XBSuLVqDg025G9OPqORGsaDP0x5KBG6IjTH2PbSVBrl1Vz4JkT3fRZuZvneys4cNIwI7cqHKxRVG1WVw1ZYU2wDcKKIiwFoMEnICPSgCunIyKrtbDSUQjAABkBA2CrOp4BMsd/tdlee2deBEjEEMlCzoPeAdad4KYa2RNrbbBvCMxVGCIAMEMClhgJALVlZXSzYHWeIVYD7fSv/89+rBG5GQD0TbCnIFZIc+A17SVws6zqnZWQ66vnJY8Nx4U1jWwJr5oDQNWguFPs0NQEVaETERkgq3Wypp+djqxdzmCsrhsBfAvAmW019UzGgvAz58I5Ncl7QToGcx3XRhV4kwYAPMUiYk3otoNsFT1VOwmtfMndiqG/rMcSrp7lB8sKjFzH6iDwl6gI6UuuUGu/w0DtG4sL5i5DBscAjKzSR6ia6AYVEIChRTw4c8LJDo2OxNW2WCPJcXBl7dSGhyGaMWJ2grguERhTyCLP/0Z+9Kz0EYDVeL4aXrTWQdVpOzxeSismqYGPvVmNxqoJWZuZUB+Xumirc+qnrwiGKmvCWlDVvfwkdV/WXBwPGnO+QZmG+ssSn0Ukq+upisIqAgGOyFYnWgUXrJ1iIe
 
JAzBz+aq32H/3twLLIxQasYhrN6FUidqNnNaZrngZS3iCqAYgANGntNQTWpofnYSBk9tJ1TNSuY8zIWjdq4+UsGqiEazkU681GNzLOdKumnZkJiMzCnGEFBqjo0A+Bx5GXniNjWuFdcy5WcPFS8K/qSwcuzwf1Qb9gNKxcyp5BNYVPABqcMVqHZiXBmuKtdcga60YoosYOq0aVtfB8c1bHxBmK5sW8MYe2gXXLFZmf+mS42YKPVgyl+ssZtbY1K9Kxk9fbwn4QrMeqrZvlrSkvddMCc5gb1pp2JyIEBpW5y6xBaZFMTpOvkqzzCqp56uRLTom4A9C2k/nW1k6z56wwaG0M7W211hZUXvwV8/pjV9w4g1qnaMFRwoXxRCIC7ZtcXRj8vZz/QLXWVoEC8AyP9U9o5zwQMYQqMOImVTVBViaDa5aAyouvjCBy6s9JcGWWgcOhJ27vXWG9LW7swPlADJCM2UtQ98l8c6GmdiuIr0qp1iEfgbH2KzmWZYCOL11YgBzHOF+ypqexGjE3sM6tQCsEz9++PWYK4IVGec+ZauC2SHFNNW8RVnmoenl311JZxY6VqnGMwLzbsaKjKvb1DSATs7pgV6LDiGs2eLD6sSB/oO945dza+9QvB9oaOwBE2uk7BjbmgH5GW22+QtXoohOWHpnviTV2KvMIkIDXBsTadVS11MCXMXZBzI7SsS4JRLQxCERC0CuTpzY2F6/jfqkrW/uNu4kdQj+RUJtfGTorwnXLdhGsCrCGkJ916K4LjsTRqW/ndtSaWtOkNaPMDicyrNxLE2IxHffidFJG31Nng3ioOWPSXdtLYGUaW0l/Cda9MWrOXiHZVWiRNtY2klUg1S2qLoDzkwDAxZjQAcO1zzRF+wFBZIjcdquunA3EaLWNKz8iAoiqM/a+tckH4AXqNYUNctcutjKDa7EJ86WdIXZeQCVuhAtT35zAvNCdiC2B+fiEH+GaO+mJ34LVaQFnTlrNhZVycgh
 
w4q8UGkPSNrLt4vxewyAjy40rto8lW9MjYoZcrUK0POx64Qfcwh2p0qoWqz7wSXRhUNz9nD1qcWdMCh+/gy9LW1zsdKUhLZPVLuvGzjWz+saLxKgCN6CWC8kHRKsGG8TrSuujuxR5htJfpkdsX4RVjlXTyPN+TQtaIjF6AgCZ0eyvqoNX57E7wrET1rBQYyQHYAepSjDoEj+V2nOdrIte12TvXWcrympkVsOQWL+5HWhy0RwN2t3Qm6FARMZjW417VPepUbQzvmoWoe2XYStHMdWEdKoP/HxzXfSZOh/5r+59AbXGeKpM/BWXyd6uzvUrP7tb1O0qrExFGzdwTcVqNvmsIfPsVHXFslLdEvDviFZasNJUcEThCLHS7g4iNcohx4jM36PGczUX114daxqhjkj06SqyQR8A67QyP0iGh4x0GVKlwoyRt8oPNU0F4IOFYJzy2pFkjRQ3jk43oTPprMZyagGt+nQhN9+FmhTdl4DMRWqrcUArTJ9W8m11t8XVy6ATpj/fDS0iAOgVR57cXK6NN9p0gxuzGgM64gRwwS+y2qyKpNpZ6uaSmYy1/tbEYBR0TSPZ3lZQrOYB1c6n6gh8BZyI9T8AAKKmD9AzXO0M52QAAoB28LHIsdqkAqBpen2ae3qw/OS8GXsNp0BruRDbM9TE0Sejq9/QBSMd0Xg95Nvm3WWnRV2a2ArJd5+qP479UFfBkUoEULu0U/KV6oNVcw1rJwEAECGgrvl8tr8rg+0ZF6imZ8gRmLt3pcfrkwOq36nGpeD6i0RU5THtMNiuX3AELjLlBS1fM4tesQqs0q4JrlID5BSBgzV4lWHvYnNGK3RGRKI+XLUqA0AiYnaO+ytWt6GaCqvBxxmgNdQ7M7QSi0sokzsbYWXW2ps6m94lVw1xIlgHq67vap1y/1pjzBCzs+XAWn3kZvuqiLyh4gRIVir22uTi+37G2hdDIPIFE2TJsqYM0TceEcEk7ldVTjWTPStWVloN
 
gx6vaO+8gpJVX95fuvrtohPv54YJGFXM61T4xUvR6qe6mbBid5jGEhEgA9KeJmoNsoKpCBdqdzd4Jc3sQZ55EEyG0waKzYT2YPNE467FAH1I2SPFyxSppmfRKkHjV+Mrwje2o+VEBLAgRjchABCIISESrBSIVPzmbk4ezXRhSNALcsULr4ubAMgOGNQNa2/DOt1c6acVVWeu4SI8K/UfAACga+G1uv706MRaY+oGmLt07Ve40IdX4yI1qay6VmiHsQ7ui69Xvof6ePnbXRQjuFFAQOZu6rujbatthQg5KazC3JkBorqgs3JYfSJQpW78Bew/lp5qsTZnXTPP32hiYisT0ZCiV1Xo/JVKC62wEyEAdwl3G5ZAJG2igACrI+rnIDilie6CF+jKcZj3Ro1N4NMxrr9OHVRcUaUdnHlDfgSweuubVOlAZziad1QdVJnsTiDOu6prrsp/8a6tlznW7lgHUDUPV5FVfeUUXV04vq/1l6eDCgnk4r71bjuh+p77QIUxbCofAPwQ2Pa493buM0ThjU4TSK9ZPwSANsRJxrolBrZMxjGGLZmstDhYlFteNQ3yjXDq3N4OkQi0uWzFIC5XAd79RjRBeT9dqSZa329wISrHkxV7XeRKsLzsZpqLuPtP1WiaD1UcwqGEHLH6SVYB1dl3KxNtldouxHesjGslIljLHrhv3Mx5hSYNXrXSF+9Sh1pNBAgVlNHJz7d2BdarMvOjAwCgq7Pc0XaukfMxLWM7Dc0Y0+TI04q7GlU7ALUbE4DQldVlhepiv15X2hGx3qizlS4YIzWHtKJPcl0Cr+UulJbWJ5q5lyM/p4Yr0DGHhopRfD/ANm/FyfNdcCzlm1u5q/U2+0m2ah3WvIXKlPDMVrXKIG7FFFiNDXqS9WlPp838B6w3x4p21TR0XhSsvrT+EnSuQtlpFSJH5EAARBoqVodXX+hqzcw4sKrOrvJg3XBVpzhDwt6W7DiAK1oCXAk8+SGtcTMAE
 
YmqDxVMfdKwrsKdTVLZ4dY3NCZlBdlKy1paR6xoHWoq3BzPTFn7ilqtTRKn9SrFWnWHfMvgIl+B9wncEXXZVxMSHHVZOXptZOMHqwzsu2475+ewvzr6fA1WCsuOjFN4tUbAynS9ACnvwXhKqyPVf3+RUJ20Lxy8ckylD6zYvM1jBeJrAF2g0LIMVQDCWu02eYr2sqhg4Fy7ipaZayf6Y5xgrEIC1zXjqDvCcgMGKydWB6xOdKN0kBGgdm6MA7EZS+ZPNO4XVnks6xIBkC05XXGi7d1ddT06UTnh2pwhWfJ0QjJmADq9VXP+6yrWNMrXwmJFcUZq5q09x5kPXiN4saD/tzK1jOZf8f8qrJi7uuGqtK5v2avodBem+psa7mus409xDm/d+7FOur+i18v+zFq62rTvS1tVNchb+eiJAXFVesYFcpFU1/PVqxHU7Sn72c8KAGSrVrVRWlUSuebMgbeQ6vaMMSjc5LOpT+bTJOTQ4sRUHzQvAxehA49R9FekSuExqCpMnRFoNbKXOpqlHd4CuOBmOlOdKm/Dj6sbt1VAeCUF1vKs7uQMLNdARMYsN5ATXcUdVf2/u8KKIGtDgBVFrQ7NxdJPU88AlqFXzMqLp1eYISedSpWBo7bqfJfErqYWwAVD1pv7VHuZ08kreGfXkDXDmL+NWbTkmmjzKibMY7GPCEAMrRqtKQV7J6dZai3yxzicWHFr2yUbNTAFqEgucWBZqqYpVl6OwKA2+Rzuq3nsZ4G/O1q+9DyEANoPk9c1XjsjIFQrCMyksUq58nFq96zcoMq2Ii9Uj4aaiFYzPW4OuLmHYIN3hrMtj7tX1aj61VfE5DBR00O1H1d65tpbI3iXP3Etqt5ZavcGja7BvUbD5gQLxAopXmqreqreNKehicjHeKAKNiIAOb6qjR4BIIqa3lztK75C7oh1bq+pM4DKlkJXEvKK0VeLOjDjWtSq0+sHoHWqEQz0ybr5RizMpkur0fISJHdkHV
 
TgRtTTrXtPzltGJw7bPquf7aT3g1ybLOCMbrJXMHRkqyJqp2rDWL4idpWqzBfeNSR/WSunFZRWCueC2eoU1MUTVoQPlnHcLPT5sIqGWDVHvYnpPYG6MKu2X3R5V039WsPJ1toCgY2Dej0HFVycTnLfoikWqfcWoKYyyY2aw79BgWuxuawfbj+UK/asuZsCDVb5gvcevI7Q9SF3bSOqFj35yFRlezhp+EY4uYM1RK1jUdnT5LtGADWZO6MC6sPjpoO3n4zxg+B8BqiKOhyuSVu4VVdHrLwmB0E3AyqsYjXwFt8rKc1KJhUOakPmD6op+BV68KKg2lkXbk1ElRzd5az/pPUFw7F2DPnTa9qmIkxwQ+ksnKorPgLgZr+TCQIAc0FFEK+6eBeYyePN3xMdD1XyWJ3TlaJ2ROeNB3S6vFrJ6kspbHIfyCwt8oyLzkqoId9cnrmWubkP1veqW07Wd6rG12YTmF/uUo2UBQdU2DEKyPbb9qVmjFVThhBqJdhkKrOp0hpA6GJS6JgCnbnm4bhSmuS5ocaaVB/kVbCuGp2VpF6Fuzf0/U/oxnDFKnCX9YFYkx/xP5gBrYjDOXHeHvBWTsUP9eSGE40DazWVrTpCFL65vkHsFbyaUarPXy8uN1fAfnthqiFAtc7QDr5vnGkOA7xwRs1yBfCAqheNmFt7oiIA5iI/tUOs9C1sa2e5X1eaCbU2vaJnKwHUPtcmEVVXIQACZMwMle1Q7farI+Mv6zFa1XTWKjw9bqi+DgEv5NBXm10P5l0k44u2WwWymmtfb6qbpWiVD67Axk1rL4NV2brEksGcFxiBcwhXNYGLJiMC1JwG31Xj6fjjV9EKQKSdarYH2JynP74mQavk/Ky3NYJ+7nvmswxVK5jytrR2PeeA9WXQxqm22fkKzmi9AQSnVmoRUqrE6iRCta5UMnIcDPWWGvlWysoitBZPcCxoLobOCwNEs1uBu5rTM26kV6jXt6Cuyv0QXtDvK15
 
szZFftTL9l5Ukav6WVXHkvNzapPPjWHtfN0Jr4jMjiL7pVawJHAwNFIicU26vsDJ5bBfd5HJLPjzmvKVQV+JERKSNHL1KcwNPNYvrQm+shvdHEgGCttFL5x/VMOqrRTx32gahNxaMFFxAEaz/zQCYn97GIHIzAW0b3ayo1I2b/dWV0V2V3Kx3CqNyLiutbgYXXQS2ukI1qH40fUiaavfy08DwsSdCN8ArPOSIFi6+XtXydVr1JoTx2KpBraz5utKujeBFVK5onrpercbFCMWYs1Zr4kW95ia87aphHkCwa/otnfkyBwtQ5u21SklYFq1nUXxrPIUS2dhKzdbyU7Am31pNgI8Je+WOZOHlpoanIDQ/2Wag5S9mDE1HUWbiWkI17VxR9DVtgIZQWPWxzlXuSGcuufCi740RKlVaE2sNtgNjruLfO4cLyIT00NGM722N3V/hEg9716RVZf2K4qrmHmKVz3SvV/Vv/XVB718wlpxfRX5kXm2qlfwFB9S/BRsTcL5TnczNZVfsX/NXGA9BW4fXmHLerDbmgzGlK/PIX1o7oKK9v+dtu4DTfVztSN31czLWCGgKNwlWnA2oT/AKwU412C5hRf0rwnNmqFuLvKLWqU4GVFWSr2b/rPdDNW3kysN8gsHalq4S1BqxHtG2Zdqrb9+1uklQp6gap10A1Kp9UiM2x5SWuhyW6p7QhVOsUn6lDLQaKYDqQr499RGpCbyaX37+umnvRw9sl8n10hhj5Gax1zaeGZFZ3e0miOk9EGiqxo/ckLr8kLkc+WSqKVGprDqvx4jcR2N42LbXZOwNn8qgIbfiH/xccxkG1xgCIiSbx3fGluPv2pSw3GML+Wvz8yJZ+Ex0pTRqNoDlL0f4Fz1ia0qYA1cBRH4CVzrolevV/oPK0LDTG9D99GUp9S9lshqPejXoJeKPctPnFXSuaH+yd0H4khs5RHmrsmq/+b7SMx4b1jAwhqEG0tVMAvSmEgEY9S5s+xEA
 
kEgTugSvAbC5AQJpS3Lmsyt7RABysaGqEAkA0OYjagrS6keobghAzLhsrj++BMMfi64prjyOnEfFfDoObHfdncmbMk6MjhGhkik4drkwPABQHVYzb8zNwXrXNZokr7PsjHVhaAAy2zq69qObnA43WFV4+lG3zhNhrba/dhBRbbLVSGTFE6pfz+uFeocuzlCopFGnbK+VfLXkyglOvFgNvVNZda/DKQy7N1g1xGjULOnaLCY3ZPYvc6rLmHBAREgayVl0hibde/dRW7+HnIOEgKTRagyjzmrDa/4lBAIN5O/nceHJ1azl8GLxzfSdNE10BqsLzlnxomsfeHQ6nxvQmL61YanQuUoOjmepJi/bWu3bZTdQQ388YlV7X4WpEG0tgTEVnJIy7XQ2ghWDd7NoFVXkzsRV5q4gBMAY88C6cMyXMN9/5oXO6fTvjWK4cIBv8IV/fQO8T+J0JPiou5uermukLXVZmK6YdkREpAVWBKZtNNNaPnbDLbIkWs2sFceWkECb5cg2SoeWVhj5CDgikptW6NzeWtfQB6zrc86ebaqkzSw2R0NNIVZIBANp9PUdXiSGcR3fO9FDNWntHIOV+zp2cFUEPqFZ1xYmt4AVKVJVlI/1YcKq2Ssr5qqoUoUrK8RatmPldZHsoTZGr77oYkLyP/eq3F9HmXVevHCwvxdjTGtdk+bqbLcdqc6xGs9OWfM1AGlwYncAsjAQlXNX67PxGMjxW4267a8X+1YVR5oiOiRwaWhzTbKmkRGXsynAarAqfl9lNbyPr62B6MwKBzg3uwlMagxsUt21xR5B9urmpu52nupq4rR2e/UZ7PwGBFczapvukr727qYozDIk+Ru7s+uRf2b50Q6CBza4eCrYyeQA7eysVzyY2rh4WNCrduorqL3gZlUm1n/B5kFXwfAKWFeuU2uDwV8Feqd6nEjrtsYFPNlOG+AJfw83HOj64F3WlXaQb65T7uDu5t9aB5YIEN1ax0pYRITuf
 
4AE2hp3hMhspM5ONa+pKx/IrSQhNzENrZmW+CVK2ql6oz7s8uhXyn5fHbkaFV3IirkRIjdCteHzDgB4ovUwtarK31Q7I9NJzImOagXOXl0a/sba5ITqVuD7Uj/Rf3Q2d2XJOBOsxotVrOG/+NKuDTUQ/5csCqrnzMjSkLZCtA1FdNuEW1E57nOWEBARCdAK3C5CRiGx6sp2fS05Brbt0y6uY+To4gz1lqJFp2tnFTfWnoXRF/LYZpvF42jNGPSDh4jgksCaKik4/8iBF4zjh8Dq0TcAQDT7770KTXJtqA+w7UG1pIGYLaomyyNQG1lcGY2aLVSjXqgUIDk8e15lUN3JN9j6XNWYr4DDHWbbUNUVOIvK//uqx4NV3Z1VIl/Cu5WAnMfpf/dBPa+OV+VpNZx1sqGqqGXMCrhCtuU0gx+HFjczAQBA6No5XozV8BIoZ1hUVGr1lzOnzEy2MKvW/1SD5jDqsOgCjE58bjaTE1dFUYioSXsM2oll/Vj0Q2VdJOdmVz2og6PqWPXOXsRbVDbTa4KmDvHAKhl5bK4UZa7MTfd/x6P1e7pgRk0uHjkeOm4CuJiMNVIc7KjWIW+AuS9r7rMRC658dBi6CKxqvC98U+t3bfRda10Gvn61Sjms/CE/92qsbXFRc3D8SURWxZOu8YJrvXFINKHPX/kZX8+21e1oo6S8biS7gJ385gLoM+4Ort62cSqwYiKn1ezmu5os3drHcph4PjMhUtMd26zKEndAMZKoPlWK6aJ+9EDxuoicejJjagREhHa5N9Z53k4MN5o1xnE/fhkJvEpC1cvVfLmTatErj3U3aq6/7nDvaNYogJxX4MDiW23TMPVz6yLyUvpyI9VpMts28AY6WIm4G1uGAoDarsrmFj4c5wNB5nvh5oibr34uVqzjw2PGHjJCQQDS2ulY1zr71k0yMl5eFTsyAQVA96ZqLAFjCGAel2FxAGBdHgsVUmaQ7MukZhCBMQC77WhN7lWays
 
/4C+7VhbEEWEVK3TS3Ss4vgXCArcw7gBUGdy4Ueu6vq1fn29aYg1ysEd1MA3D7/FTfVA2tq2T0zqXjBt/n+sUJPCtYE2+l81hxR/1enjRIVxu0ebl5G4msR1gz0y9afpbinAI26t+FDKsIFPnpBHbZcZ26jNTMKDKs5GAeplTjWqiAau0OvyDVwMrcQCmjmD2JuPwokSbyMkEAZfvpLoHM7UNid+Wyjq/W5lvGGCIjAoaGMO3mPtqqZGdqVO5dXffXMPHlH6l2rMUSVOJmfjZ4jqX6mVYtMqpRu6Nc9EJ0NoNtqnc78BWjfqVtVq1Wprj/FT0OXqFS27Ia8znlAwSEjDkt5OC7cpIfb3BNttxYCbbePHKNdicanVyFhowEELVNEFfnVHdEBCIBXBipIGOOqJzRgd70NjF0Aqv+DVdbY8BckYiYk5fjXSs9czuTDTdJ/yrLhCC1BkclWmvrWiETnHPBOWOCMc4YcqZBo1ZGFsgYETFGjHHQhNzOZmYqQ1dTl25ymIhgDXernsGFjysc7DjLO8jVWebAGlW6UXLvHI5th91Y+AHxs8gw6KujXqnyVcX5qkJ3N1nRCeiH9EsDogY32kUi0ZGoOx1qgK5+81h13Fy7v7ODoZo5rArKVcrd2Xg1S916jE7zAAhVKjsa9kwCk4i3ZgGRX7pOdrJ6Oge/vgpA24y+9X+UUjVvirS2q9nMUVpr86/WWmmSWhtLxQCUMRaGYRAEURhGQRAFQSg4h4BAkyzQApRzLoiIkJGt5ajK1bwAqllZCdjHny6Mk51etVH+Eu3nTqupafexUqsVBH1iE3zLLiDEfFXxtgdkjZc9MtDbEDUurJuMF3SCw0s9gfwlx1RMVwnrS14XVD84f+kC6D0xO4vDuNB+LrHaQ+h07ZJGnuQmhZkFKObzBQGYImQyiXUiItCkwdWAGvCBVdlau9JQTaS1VlprAiBSWkmlEUBrJZVWpEmT1koRaa2kUlIpg0JFpEl
 
LJUmR0koRKSIA0lJqgEacdJutfrfbbjTbjYRRzCAEhgSaVElaA2OccwLiEIBWZtg0EUPGnJTr3i6Ck5gdBled5ATqe+fH78IoO2u3JkkEb+pRzWq3I1LdF83WHZ7DLcOt6DSXU6lFcNwlPNjJq9SaQqysuaovuFJtWPObLvo9dSL/z70ukHfVPKfE607eRSuFmN8qjaxtYztqL0FeKCst9d0nIHF4eqqJSJPSSlkgWn6TSmvQWpOSysAINUklldYladBaAWmtldIGjUprTZq0UkoTkDKRLQKlNQNCBK0tzxkAmC3kydpwIKUsZamknAZhmWUcMQ4CGQQ60GQmBihd5KA1IKcwAGCIjBEn0pqYzUe7YUXPGZXzawMBUE/2XBiPCpjODiQCt9ae6JURssis2JQcbNxlPOGhHQJ7nDXnoX5B0ySsobbGlNW4OUPMVxf4eB9Ahc7K79b/GSS6pNqXqH1ErbU1TAl8s2n1YzVZX+FRqBSYUwhA7umL5KXh7KKaTJ0yNH6c+IvPPlOktdbSlN0ppbQyjCKJFGnUWluKNY9DJQJQiAjELVUh5wztw7IY5wwJOOchIuM8YAw5RwDBuODmxRAZ40wwzu3WJoyIpCxny2yZLTVQGMWIjDSVSinTJIZaS1mWWkrOOJBGAsZQK8aY2ye6St/UctneC4aawCqIVGWaflCdYe1iG17KLvtSw2ltABwTOEh66kBnETjpV1WjFg2OiN2Yr7QTwJWr1p2h2hnWliB3NUMzVvXri0bzRRhdSLsbO9Gk170cTHPqhilU0Ux78cr4uKCAPMOS9dWNsQgMzVbylqG1k8bKfBMvjl8CczAB5IiaMYYoAELGGBMUMMZQMM4Y45wFXDDOGWLAOGPczFHOOeOcMyY4t941Y/ZXxgLOOGMaUDDGjW/ODHsyhmD8dNJUynKZ57PFYplnSymBMQVEQEprpTSg1qSkLFVRaMaACDnnSmhOmohpAm5IBd3WobWcvNfm
 
3vyq2z6vDJj7vsaL5ELCZljoyx2O2mesX9iF78AbBubZZORrWQzIqhv40h034RBXblG7tYWUb3HNVrnwpmraqnnjZ9wFB3/1xEp3V5ijCtNVBM3WuGF1M3Q6xFbPMXc3++1FjVO7r7hz5ZrhM4aMIWOccWSMc8ZQMAbIiSFnDJEJhgyZ4Cg4BxcEMgJx33BEYAZ8BnsI6DeEcfEiRHNBZIiu3Aq01qWUQZgJEbClKOczBQSaSGkg0kohggZSUpZloRkHRC4DCjRpTVoR48Ye0mi8Om8K2j92eBkD68lZ4dVs1FcGcXVcycMCCejL3eGaWYn+LuDcT7COl0v2VosPnS9sdzJatRTrd8cauMz3nv/cBHIHuxZdPGPloyM/589e6FCVWa31EWyEa0UCDmtE3sjyxIsmaoPIjD4yc89mIaqQ5Uoc37dU3L5+gwA5IgCabClniGiZzizfMTFH5vddAIM931rkzGysY5G5kj90tQ5+3yKDTdd4sIar1sBYqSQXQgguEECTIq1ISyk554wxjVqRKqXUqBFRBaVSkmsbuTKz1xqZlUXoYt0AAOZhzL6itmZMeRtA/2ez0s7YW40xoR9cIlctZe4DaJW7T4IQ82ZFzfkwDXPjqX1hg8U6OUlWBkTVYIsEK9tawyqGBHv9L+P7evyoupG/qZ9Rq1rF0179ItafN5dy85Tqixc1gLaocUOENhpei4DU5oIhXjHoDmx00LAdmKQ+GvZjCIzZ+mDmaceZHxo0kOFK8M5P3QV2g+aF5QrJKj0LyDiBZgDEmOCcM64ANAERlaXUoTIxKamUZqQJlFIEWnCujXlKittZa29V1Wq6+2o7kljjpdVaAagNTDX0F1fzAFj146jXkl39flj3GzQhQxeItvnZuifrTMlajKC6mbtPjVNXScvGfSpqdwL31ii5ca3FLC4SKq7gr24ZrDRnxU4186xmkddVv+diJ0DzzpxONV7zt7GGgTvTm14EACJNG+TN3
 
hW7yTGmITxrL5uLaCMTRjasiojA7EN/q+fOVdMCAVETWE/bJZycyQyaMaUUU8r6UMA0oo1REZlgFjA00VklpQaUQkitAyLQJsRkfR2sZaidbVPPeRos262ia4NtRV8HQT1iYgiSwC/EsMTnj6xsxBqNoRegCyMgoDeOLbNa/qxOdjTvFLSBGtR64gas1pTarb19XKnvFV6qRhhr+W+HVLTWkY9ouQmwMgeqnK6bRN6aMrVvnuEr46DiAMeZq1wMdevLhxcED5gpF3GGA6GjT6uyjUK0T1a1IvZPtNBam0chIkNknBt2dKG4+hYPhIxbBwa9dDSR0hq15pxLw9wAJnVEJJXDCJjnfJLW1h5FZUxPE2PV5GRBBLbFQCuKnhm9gs4Q+LJXHWc+vIc1vYHgRg9tssN71nWCcQOBhCiJSqXnpSIgqfSoKENr7iNn0A1EzFkoOBg5eHuUIfjgqysaomowTU7O+kW+M/WQ5EVQojdzbWFEld+yqtweq0kjOi+whuVagMny3MrtKiaqGyy2yhGs0jWttRh0ee4LM6ZSTGYmCIYINoJIYPdpRLNFqDMWV0pdjOCYQx4xxhCJMWRMIPpKOMM4HBxKLHAMl7jhRBeCI1JEzMSLrIvFCMHYpkor52QgIhKCVlqZ8KvWSilhph6ZJ0BY9XNhlBxp2VX2tW8qfq0FvK0qv2DZ+fY6FeDlXrsZESCWAOeZPCvkSVZIpV8ucwYwLItny+z1VmstDJ4tFuOs3EjChMHlNHq73xrEETP13eiKtrxt6ywQbxxo10nH5Gj+rOhlwzfgZ5EjtJVwmGu6m5+e9cnpzBqyqPK4qxiq41Gyyr5S3ZWfamdD9Wgh8MWu9taVavelw0RAJAQPHMd7i4V57kRE6zbUuJe7xI+ZWWicJEQAE2JyE4wUQ9SARJoZHBO5XZerdhs4Kq2ZQSgiMiYELxhqK3NGWiulgKEpvzD5KSWVVgrIZk7N0xlNAQqSsTeo7tPolU
 
yF92+8PVl5AKb+1wxUXdlVgvfoQKdSwT5kWxOM8vJgoX4xXe7n5Wtp/GJZ/tHB2d+8vMMAn40mCpdf6YZnRfHT4fCG7r3RiP74ZPiz02ES8K+vde902pHggd2f0sKKKhihtTOqSWOa7cDg2mg1qOuy01dud0jfo5ozvmKlIK5eCirU1V5klXJl9PgfrDFji9uwbhzXo1D+3qyGh4pEAYTZU9Bk261zZOjT23FY2UJeZbKqQtR776ZPtrWmDWRntxWDcTYrNVrzlxmiAkCzAYrRAwRaa6k12YpVICDiDBC1Mll8pU0+n+z/TaQLyC8M8ZrL7Thfk2yd+KoPq06r0QMXvqyMeDMBEM6yMlMkNQHC0bJ4upTExJ+P57OiuJWmz5fFrVYzFfywoGku201xuZFKUqdK306SqVInhA0hNNGnw/lZrkNEjriRRruNOBGstuUuOKfMzpyVgIVtk1epNbeGISIoRUopzrkpaLzocrkhAa8bV3/03zqL3JUXrMz66joGZGgnjtM4hndr6HQ2qzuiNmbmhsLoOO2SMM7kQl+fx40NxGqVLAxtOIQ8PNEiEam2PR6iCSK4XtSMPMttruFgzWAExhhDBiYuD9oSu5tohps1aa2Mc6Q1aCCNNZbxD8y02sr/BRfPcErJDzm4GpsVNPgxc+LzysuVYEMm6dks35tn+8v8+TK/mcYa8EVRPsqKrSD42qB7fzrth0E/bq7F0X62vNPpXG00/uRsuFB0NW48Xi4Zsq93B52Ac9BPZvMfHJy/2UhezmdLpW42G391e3Cr2+LMrMujWqOdJ1U1zprH9aYSQFEWk8n45Ox0Op0mSYLILu9eardadeuxQsQF9e2MGPQ/ei70hFdX4vaCPodXv6iuyc+TKTqTtzr9glkmLNUwZ1YhmuyQUwJ+dMERKJrV6wx8N4CIbLmxScjVXDbmGlRvMtSnSQVy5meI+wxSKqmUIs21tqkBBBOd12TqWWoPEAULP+fLO6+
 
0GkbyITHw2sTGSiuLvVLfgC6GVJ2liealmhZqoek4108X+cez+b3Dk6+s9UeKSlWOpD6dTIjzb3aai4D/fDonhC+U/MHx+Vf63QDhZZZ1gvDr/cFhtvjXe/tNxt/ptglxK0kvp8nxYnmz2eQIZ1n+o9PJ80JLwMtJeKMRBojCZE2AGDIC5986Kw2cp6K0yuez8dnRdDKcj89OTo7LUgVJIhiWs9Mbd95tNdvWG6gpblzVHjXYVuq/ApeNDVUAtiIj8FEj8H6pw/HKZKjF/ZzkLZz8FBAm2ehs4Qo3zHozoLX1ujz5+1VfjKFG4D6rROgvYAK0WgMwby7bhyvWnWXTDJsaJRKMG4s2YJyAFJk6FucEASEyYIwIbBWVUkbFO1CRBmKakNlyXnebCl7WiDRSXrHNV1Q3+GnphpAQl1KNc3mwKM6LcizpSV40uXhRSAHwm1cvZYg/G082wnCsqRFFqeDHUj8r5PU03Y7CoywPpLqWJNea6UFRTkspEa63Wv/w+lVQaiELjTjRuBbHaUSfnJ0d5vKtXvtUqqcno4NSDkT4rU6cCNZLEs44J1VqnQq2mYTdgHNnr2uCIs/zxXg2PJ6Mz8siAxbEcXrl6g2ttdIglUSZjw+fNa7fFSKoOMKPBlgoYW0hHq0ypEEsWTbSK9cgiz2H8HqMz4q5fpzHpfeuagreFCw7T8H+4w0rj24XtvOmmLml1lozEzdyKqHiWyJyQVoX6vMa6cKLuTCK/cgYmBQooiyVUorsniXGLjXsTsYGVUq5v1KEIeeccVZdx6ooqpQ7IFAtC14Tra1Xssay5RJNOJf6PC+Hhcylmin9YpFnSsecPVpkzxbLd9qtsZR3koRINxnrBPyoLG7G8d1BNyf6s9PhdhJfTZMux+Ns+cs76w2OPz073w6CS1Hw+Xg0kvp2q7WdJjpb/M9P9jbSxq2WjgVrJqkupy8X+bv9LmbZ3Wb6YDJ7kKnNNJAlU6DH2fLPjk97Ufhm
 
u7mbhJtJ0Ap4isCWk3xyfHz4YjqbIxNRnMg8V1KJMMrzXBPkpQwD0dVKFpkBKFWYpAofiLWUhFd4VSmfobP6BIcqfIL2gZzWACCP75XsSC18BhVtgz/AkKbQCOgD12h4DsF6sgZAFdTJcgmgjwZXNmulBtBW56DddsLYqG7WVOkytLF3v1WYMRy5iyAoIKW1sVBtbIvZ+aC1zmVJi3khNVssgY04E4ssWywzpZSWstlu7Wxt97vddqtFYAIz5KkTELkLJeZKj7JyWsqlVO0wGJdKk95IotNc/fTkfJiXW40kZmwk1X5e5poEw6KUSymjMPx0PDs6PV+7uvtut3W0XA4Q16MgQfpkPOmF0XYcxYi/82Tvdr+znSbdMPxoMmkwvp4mcyn3hmNVyLjbTYVYRsnNgD85PN6N49NMjYpiLU4I8c9Hs0BTP2ncHgx++/GzQZz+rZtX8rL4i+mCR/GlNPro+OQjxot8eVvQr241OpBPxpOSRKc7KJcLqSQRLPNseHiU5wVyzrhotdt5USpdZ74Vf4nsGFUj4o+oRxRW8+ZW9TtF5wvoTa2f110VF1vDb8Utq13QfS/cvr8e4PalzdIf+zUCaO0XalS8XNnYzPkSFT2hjUFgbZcRtmIQg6kX8QEG43wwxjmwqu5Fa9sYIgSbONCkkUgr/dkXnz978kwpmeXlcpmVZQmAUqoSIGk01zc2vv7BB++89dZg0I9EoAlM6RYBHGby49FiUcqCKNT6YLmcSxkxcaR0qakjxHFe7u29vLo5SJLk0TJ7NptvxmEvDDnnL2QZhdFQqs2Qp+s9xvl/Op+cTGedZvP9XvuHwzHXcq4UAd+bTlRRrsXJN9b696ezo2V+pdFgjA2i8Eaa/Nns7Acn56+1Gg/my93B+neuXCatn0xnqMVGI2VIf/Ly6JsbG3d77YSx0e7Wz84nT+fLUqujXA7K5R//xV8U52fddvKd3f6vv7aN+WiumAiTBggpS8nEYrGYT
 
mdZXsyzPF8uAUBpKKTsdTobeU5Nb15axemw4j0IN96v6D6bgrH8WLcNLQq9f+KDfQiepGq4ruH1IjqJEEB4uxacpqOac2R6YJxDi1MA+8B2RN8Td4qzPQHcNPLTjlbSW1iFwBnachPS2t4XgTPGEKV57hECEGmluOAAwETAkJli3TSKv/bee99+/71QYLZcaFmGYaiByrw4Pj394uHTn33x5J88evwf/uAPdi/vrvX7nW43iRMWp0eK/8nZ/GQpsdNm3c41rXdb6SBOzsvys8kEcsmD6Ea78e3XbxZaP1vKe0/2W3H8lUu7PxsOl3lZar0s85SxD7bXP5tM9ubLsdK/sr15UpY/n8wWSv/1zY1mwP+XJ/s7ofilqzdPsuLH55OlUkEYbUfBh+ej02X+br+FAf/sxcH6jau/tt7544PTf3F4+pev7WrGQ17+dDj8eq97o9V4vszeKPX96fgP7+3dubqNoH/2+PFkPNHD03gyvMKKv37r8ru3rz1/8UJK2eoMgjAOWcCV0oBFUY6n89FkEogAkGnSSqv5bCGVRO72jXMPr6+zoBkIH4r34ZaqsMIhEcGFgVfY0PmfgATKfOswfbFsqrJXa34/uYCa8EBHRKNAnaGADswO38ZZcfmsGt5NyNcarc7WrNL/jke9rWubYeLhPh1qVAZHxl31HwEoTcr4Ssb+AEacE0NyMVBEFjbbrThWOJxOJxzCVqfNGe+t7bz/3ge/cvjyP/zHP/mLB3ufjsZRFERJHAjOkJEQDalDScsghptv7DX6nz8tO+uD1zd7b7Waw0Qj4wutn07mo6xAwTe31iLGPz4ZZlINWo290SgbT1+/ujspJSPsR2JbiJOiGEupFf2d7bV7kzkCAuc3eu1lkf/7oxOYL5uE37117c1ee/Li8NNHz9/ovnW91VwsM6XVsNC3e53z5bIdCEySHKh4cTxpNG/2eg8nsz8+OT04n6go+s7Wxh/d++Lw44+bctmnrFku/8
 
Gvfvfa7ubRyZkIEuRqMpk2GzoIQy7C9a1eb1DOFvnp2VmZZY1GEnFEwlmWl2UJvmbF/TFFyh6aKwxnQ0s1a69W8kI2a+n50cfIvQvv4vn2GBeKX3UD3I0qdJF/ErZN4tjISh3f4AKUAJ7MwNsnKzwKjvap7sVVN3fUT7WPAE7BGA1vU53IGHKGDEmTVtrsUmviSSYWZbP4WmtSSslCU5o2tNbHpyej4ZCIAPlsWfbXtv63/5u/8Xe+/0EvjXSpymVeFlKWCpVKApZyakzOwp/8UfqLHzQoG8/mP/3wi5PzaYzseLGcKV0w1mmlJVDAg1Gp749nu61mNwzm86zf6dxstRZSf3Z8dr4selH8cDh9r9O+0WpMNTyYzv7wky+y83FPhM20MRCiuP/gW1uD1zvNo6zsJMm3blxZSyJkvMgKPZoQgx8dnrJF/vx0xBgfxLGIo8eTGUh9cD7++fODnX7n8lrrf713//H9BxvL0eXl6QZkf/d7X799/dLZcEzIC6lyqaXWIk7iRrvV7THGo7R56dKltUFfkZZlQUBKKhHwOEnSpGkItD5YdVDWIy1+lGsaGS06/UhaU8GHP8wPzluqxanI+TIWMzVAmFONKWlDjT7s6ljScJsxSohcqY25LlttguvgCuzq8wEATMUeVZEsHzNykclVZWGSSQatZqWUTxeZ85BzYEiuyomIiLQGCOLm1sZW2mwWZTkdj4UIGs02D2ISjV/61rf/q19+v9+OC6nyLFdK5YssL0ogEEEQhEEyPmn/7E/ig6da8P3ZfCHlWhTebSRrUYCE+eHx8Wiy00rbafysKJ8u8tuXtjd6ncfzvET+j+7e2mq3fvj0YLfRuN5uX0+Te8PJ+eno9uXd/8PX3w04+3S6yB8+SvNlnjYbYfB4vvizFydXO+1C6d1mM8iyX+y9RGDv9zvnWfbnL4+HpfqT/WPJgv3R7F/9xedBFP/GzvpXOw18+fzwP/77wd5nV2LVbkZ/6f2
 
3X7t5czKZZ3mZlTJJG51Od2NrhwXhIl8OpxOplSyy5XIZxvGg12EcNcE8K0ql02abB6FFnTPT6tyJF1iqBlX71423c3TAsaP5T5N9KqXVzn6sL+LjwsVdXZVDPQiD+9r/apaEK10jUpaZHeTRwdZAyVycwFbemeXv6PS7bZq9FgBW6+YAwCxPNv4+AXCzWIQxk3GVSiljJBCgJptFsLaBJtKgyGa9GCadQbcoRsPzuNWJWx3ORZnnRCgl3X3znUYj/eGH9754fjJfLAVjXKowChWRJCBkLFt2P/qhvvra6Pqbe6XaXOs90jCV6mw4ub6zs9lMZ0WxjthP4stpdH883R/PfvXapWEhrzTSPzs+H8Qhj6OhlM0o/Pzo5FYzvbOzmRBcbiTHUuk0vvz+ezHC6WKpBH+a56+V8nQyHc6z9NKV0enZv77/bDMJi15/VJb//smLv3p1a7GYH7caj6dxJ4nf3N0a51mM1B4eru0MGo1oPYq/8vbbZ+enWlEUJ8V8UZRqs7++WCzCMMnL5Xw6ZWQWIOSqyIi04EJrUlqv9bob69uMcY8LeqWi2dNqhVTnTtiojVvg4egTKgL0lmC1SLFyVKy3tMpnHrXW4fLeC5FA5ySZiCZaRV7FjKByyVfAjz5XSWSr5SurwrXbTSi0hgn5yaSJfATU+PLovHizqQgjsLuEABn+RCBuwlCMEUMCWwSq7R6inIfRzuUba+vbwBgQlHmGZu8dFhBrXL319s7ulSdPHv7gF/efHg6JSAOVpJVSoDUxZEyw5w/ak9Hk6t3DNKFlWU7nDOnF2SibzDe2N2Yo1gi+GE6vd9v3xvOzvHw+nl5Pwm6aTjQ0EQ/mixKI0uTxIlsMJ3/88Nn1tf5RUc46a41AnGbLH7w4FEm8EQanZdlJ40+OT5iOwjR9Y2Pweqf1cDT8yXiaPTscb/S/c2nn/mgssvmTZ8//jFQrTXZvvrb4eLPTFDHAW6/dnExGRVlGcTNMmlu7
 
V4MgQsYG61ukdZ4tVWegSZ+dHIVhNBgMnj2dSSlLSbnUrUYzbTTBaS1HiBVisF5O6iHr/1S5X/LHw0pxI9aQYpx3unjNV10lspVKzgy1VxZmkZnZVttSofV2NBGzsSJvWyKYQiY7Xep+FIDzlMB13J7J7PNAEMyWoOjMl5olXrMJqgirJgIyRSGkAbjLNzKw6U4FpJQ0G0Bo0JwxHoSNIFCl1EpiEAAAaaW0lnEhyzII0zff7W3vXPr43sM//cX9WVYKzoHZjf+AQDEmhsfd+bhYH3Ru3u5t9I6VHp+NFkl4mhdX0+gP9g+CIDgATNP0pCieFvn/5+mLnAevt9KdJJqXRab18nR4ab2fav2VW5f/zcf3ck3fv3ntvbXeVhp3AvE7v/tHrV6/tTb41lpv/+x8/9GTN7a33u20fvL85aX1XqIndH58NtqEnfX1JAl2d+/tHd7qdw7m8x+fnq+laSuCdhRtrq89e/6Mi2iwllKWvZwvNrZ20iRhnCMXiFiWeSnLOE0n08lskbMglEVRSinCYPfq1bTRrFtZjlIqrBBUQEQHniqcVOGsFj4iAl+D5QHnrghYjXi9ntmPexW0XHXRBAOosoA26WPylszkOc0P2mhZ53FXTOlor7KCtc3jOyOaTOBCE3AG9ikNjkqNLLwv7xIRIJAxxjQAkS5Lu+rDGMIMGXAOQGSynVqZzLwpSWYMgyAMw6gsC600ApRlQUoiY4wzpbFUvNW/9Je+uXHtypXf+dOfPD04C8JQSqlLCWADEIKx2dFxfOX6r1zZ/pOjs5dPnl+6vPsP7t4aBLwTit/9wY+//s2v7AXil9d6XY6//Xs/uHn71q/evLSZROfLbKzkj5I444It80QE5csDJnV+5fLpMr/daYYigDC8tbN5rRn/7pP9NIoHzVQge3e992I2/539I5EtMUlUWeZET6bzF1mOefbpwcmdy9v9gxdqMh0TXt3aIeRKY7/bHQzWCHkUJ0naCIKAA
 
LLlYjI+f/r0yXA2LfPl/t7L44PDIs8E50zwt95//627byPjX+I3rGh58t84twbrP7n0v/PcV71vMFrRee7GOoSV+tHavaqleStzxrpDfomE+c8kkJSDhMsTAXM7Z6IDZtU4e4/6dYlIawI3cQAdRRH4HXZqxGlX5ZkFyWaxMoIpgzfAJLNRjrkqAuOAqLV2G+5ocy3SWkolpVREKIQCKlSptVKIUmsNCEEYJg1AXkjc2bn8N7//S2/cugKchWEYhIFdGsiYGGyEb7x5OJysJfFkNIHz07VG/OB8kkt9KQxZXo4KdX50KoT46b0nSZ595/rOw/Hsf7n3LOIs04BRPJ/M51n2yWiqW+13b9/49u7G4XT+py9PPj6bRIO1uNe7M+iCkh8+3jt/+ODl4ctPx4uvbq31QWWHR+XLl51G+nKZX+40Xy7meZErhi/Hs9cuXc2v3N4b50sl86I4GQ73j49m2ZILxjiTspiOh2cnh/svnh+eHi/L/PHjJx/df3h0epoXRVGUCuDt99771b/y6420WaGz5q1QxZAmSISkfeVXVTHngt6Ol6C2kIicQQguUF5zhWHVzLW39HrfO2fevdEE1kmy8we9c1Zz4oyuJ22YFarl9cyayWQdcFvN5EnQGwcOmQjKWZwVrP288QFWH19AxhHNZk4m1VnNVcZN36T26XhZFEXAAwh80Ax4GE3nhVaSEZVFXpRlqbUQIgwEY+kyW66tbf+176azP/iTvWeHTAiBTGU5aJLd/vuba6WCvWUxB7z19a/95ntv/mj/6CAvf+/B81/6+vvv7qwLwf7s+Pzw5OybX33/g8u7+5Ppp0enaRz/9MMvysn8O3euPpjOPn70vNVIw36/1HSp1/7dR3vroeg1k79398bz4eRXblyJovAXxYTC+POz4U/PR7fbHX0nGvW7T8az5+WLcDQuk1heuvrkxREFZ4Moij/49otO74vpYePk5PHJSXl4MCuKa5evdjq9KAgF50
 
UhgfGk0QrTZtruPnn6ZO/Z86NFxqNo48135O23KYjspgw2W2O1qkeJ2yTuIpDQ4bHyeIynYcfx1bOoslj9BHCQAq8w60Reu4r3rEVNv3vYoAM3ObSRS1qBrUElAPug4iq+5U60H8nRpJ2E7gD9ZR4cY0wp5cwHZMg45yCYLv22ZJaABWOMM20iZHZ/KEVEoHUhS8pRA0AQBoFggne7fQIqsyyKYqVkWRQSSGlFHCLOVbZoN5pvXrt8eHSuSsU5E0JEb73f++Z3Z8ienZ0/G03V6fHVW7cSxiTn/+r+0ybAd67unGT5jw5Op5NJ7+zlla++9YuT8zu9VtpI/69/+vO21v/Hb78fCnYljf/li8PtOPpLV3YDoJv9zheT+Z+dnK8R/+nJ6IeP945Ozr/91u32G+88f/T09NHTq/1eS2nJeLC+dnw8/MrG2no3/eHpmItoXGSUZTwKW7NpHqSfdbaXhyezklGmP/zi0eP9l+04EVHEBUdNQoggCKRSs+l8OZ/P5gsVis6tOweNtecvT+9ubtzptokqOxIvQAds0bNTxwR2IaTVZl6Tm/p861v4wn9vC1TDXvtYMyQu+PJOnVb+u6Er4VyiFXSu4tU8/tXu+Wkeu+J8M9srH0+rB9LQl8LXwhb2mNXb1Btt2Q/ttiO+np501VOzSZgmUqQ1kSJSWmktzaxSZZkTLAo5lZRGQRqIRpxEYSiVIq2zMl/mWV4Wi2w5G48GrealS7vRR18sdC6JSsQrN26/s7a2HgW/V6ifffrZ37515Vt3rs/y4loz+eG98d2ttTQMbkbBt9Z7P1jMkktXbm5v/+zobA30tVbj58PJBsCTefafHjzd6nfY1StPXhz/84/vh+2mPDvvdzu3+90XPNBad5upSkKlJGXZdn/wl1+7EnP+dq/5//rki48++jxsd7qN9O1ea6PX+6Nf/OLlF/f0u+9/9fqVGxH7BZMPT+U9GRXNHb7VvDzo6pP9h88e6dmcsmX
 
Q7QftTsCQFblOGjpIZKK6V2+xze3ifHI0nf+Hx88Hb9weRKHN3VUJnosq2EdtnBFKDn3eUvS1oeji7WiTiXXMEUF9/Z0lvi+p5/8S3iISjrpNjGllJXj9Kmj2fbJGJHFCRNRoV4m4xaquYS7HQKuzBJz6tu/rFnFVr4cm1RkwxhkDxkyg3tZ6AjBAYynqUmqpSVkzlDQpIk5EQEqrZ4viRU4fjo6+1e8ca70WikEkEo4NHgQRB025VjNZtIke7b/Ms0Igiig+275+XyT3Hr+4FIpmp1X0Nvfj1h8enH3+4vDNy1vrN6/96MXx/XvP9Hj62nqvc/Pm3icP/vjpizIQv/34RdBItzrNNrDradR/6+aPXh6dHw05gztrnTc2+3+ky0ir6dHJV9fX/vLO2t1OQwL93//t758+2fvub/x6X4jf+/mn7//lb8Jsyc5O4/7g4XD06U9+/o9/4/stpSGKQtAfH5+Fm4PF6dns8/saUW/vKKX3gkZvsD3OKNrlMeK4VFkpRZr0moku5HyZdS9vnyslCorb7XLvxdPp4hcn59+9tMVtTBG8H25QZiOXThGjz3xXbpLRcuTYrgYRYyNcMOEMImrq/kvReeHl4gAgvCdk5kTd1PCAM61htr3Vii1m9+02WsEbl4gAJururQUfob3QCB9MZYhS+4fQGLGgN8G1RSFppXnAiXHidstvk+w0u0WadZ4AUEq1LPWS2EjqAtnPRrMNwX56OryWxO+t9Q6L8koieo2dU2qPqMiam+9/99ep29dJ40qURCI4ni3+4vlBvMh22o12EAgOT8+Gs9PzvNv9+2/d7At2rxUfzxeT4fh779zeTqK73VbIdh/PF//0j3/y1TduMYBbzcZrb9w6/K3fPz487dy8cqvV3H3j1j/9wQ+fffT5L/+jv3+yyH/nsyd/9yuv77aT4WL81Uubd/utjzb7f3R0PnyxH4fRP/zG+yWp//Hx4//13uOT8yEfrH/3+uX/9PnD
 
PwQaPHkM52fq/Q+SjTX56Gk/ChcZUiFnaTvrdZL5rDw4WQQJRK0tmg9Ph0W3y0s1PDjevHa50+0eHpz8OE06YfD+xqAGn5ptZkfcfqtJGVPO6l+LHLt7j1PmGvz41gKcFWdhnUJrnEU2RLpySnUWgHsON/qZQC6uUKc6e1Gbf3W7c9U4b+VQcCit2b/abeC7Yu448mbVe+IMGWMcmbYhU1TalYuA2amXkDFiTCOQtIs7takc1ZqASGsk6gbIQA9CETJ8Iw2/PuhsCEFF8e+Oz3/rowfPxvlBRvtK/D8fj0927m5+8K0fp4PPWPy9zfVf3Rj8tWs7t0JBp8O/fm3ne7sbf2Nn/VvXdl6enuHZ2UYgbrebVxrptSSmh4/6ef52v/One0eHk/lbvU633fz86GxG9O8e7k2z4u7Na6zZ3Gk1vhhOf3hwdnNnKx6fqPm8FQVxt/l/+fnnj18eX711c1jKw1l2Y2vj9x48Pn3wRSvkDycLhvyDOzc//dnPijDavX6tH0bdRhw8ubd8+UL1ByyMmUaxs71/eJyfDyGKIc+ns6wcrHciwc+HmaIiiUPBTk7PdbsVhsHJ+ShupE2G2WL5o+cvJ3nhuIB5tDhWQmujGV+35lEAEIB23jmRSZsjOq7FOor8WPuPGsgZDB4EUB3nj6zhiLkIwCocaxetx49s8BI8z5nWo9bVkmp65ZZQY3W7i1BNibglm7QaRmCCm+0btNa6MFtCutYgIGPM6HRt/CSllCliMUvsEQTovuAfdNtzRU3OTws5HU42onAjivTp8OnB8Rvdxgfr3WA8+fMPP8ey+DubvQ86zX/6F18cLbPrafLffuu9S5e2/ulPP/39Fyf3zydf3dncefv1MghGhQwYy5ReRDEUy2eHxzd67buDzr85PD3Pyw+uX7qxvX6rlV4dtH9wcJakabvdRsCvbHTbcfCLpeSt5uPHTxDZB+u9FodZEG698VYnEA9H0504utrr5m99Zbl1W
 
YH+83uPu2F89a03eLMzHo1+609/ErQ7jIvpxra6dpNzoYgKWYrTo+z0PBusi80NkGq+zKnTjjiGAStns7DfbbQaAaLotAVgpmHz0hZjLOS81PoCHlbYyBR5uPo7qP1nQeyeweUvYQOT3uV3cNK1KgtvIzjPujIQ6hjDGvz8PgYrYVj7lVuupMEsbwezkzdzS+bdXKP62lhyzYSay1WDuw2VoSvy8wUo5ktmQ7LAGeOME2Kp/SI552khklnbSaSUIqXIxURNcNRs6LyUshkEy7Jci4JRIZ8uSwqj97vN6NqlPaV+cjJaD8NvvXY1L+XhPHuz29puJE9OR/uzzOzs/+2dDRTiu9uDRIhJXkrGkzReiwJFdK2RnM/menQ2fnz/3z15OVb6H9zYPc/ynz0/EFm2P8/u9DrdQPzw6Yu3ttcJ4MFoPpplc2D0ze99zJOPT4f3J/MsCPibb/z4fPI//OLeh8PpvclsbzjS62tTJf/oT3706cPHv/vDn015fE44kTrttN5O02+8/0H/8jU4OysOXs4fPFbjGUax7K2p6aIoqNWIwpPjJbH48m5jNhnPFhPk0Ou24jAWotVrM6XGy4IYC8PggsazKMMKhmbuu81T/ZA6Jl3Vy+Doxptz/lcXQAfvalV4ALdxQQ0bmgg1OSIkYU09gytnEtdhbWKV9V1KqFYsooEYcG9rugZVvFiDOxprw+zuQGYD35oZ6tHsthdlHJHbBeCklXI7PwMCQ8Y0gEkjKa0lUWgr87RSSmp9nqmXpWA8OMrKlLMn84w3kmYUbiXxRr9zI4mutxp708Wnhf7gK2++M+g8HM22mumVmL34/PPi8ub+bLkWBn/tzpUfHp3/+uWtJC/WABln24342Xj2jd11CSR/5ftqOFwq1Q+DTiAixGBjcF/Rdl7uTedzgGBtcIrQEOxfPno+kXK5zMIo/vruhiL66qCzPzx/+vBJp9//W3evbSfxOM+CNEpGIxWKxt3Xfv3azt
 
PheKrViIoG8J3r14so3Iyjm7duHokAGbvUbEqVv5zO2OmIQGLajHudxXRWnJ6VRyetyztJuz1bLEe5ZL2WOB8WgGvNdO/F4fpr1zXRIi/7UbjKSMYvd0Co+ezmLQJUxW0+mujRWSMjuPhaiZK6uVABwwcuAXws3T70lXlG9VPBX9/qc7soA2yWvE6HtVv6r7WbRjWvfsUA0P6JzbXr1IIJAGbzXUQT6zSekKkrZEDc1tvbpW9aa2kwqZRWsijL+WIxXMwl0W4ScaBBHHHGp1pfX+vtpDEHWA8DTrop+EkhoSx/fbMfMDzI8i/Gs4OiPC3yAPF6u1EofavT/tpG75Pz8c128x/eusw2N39v7/jH55P/8ZNHEeNfv3YVrl7/0dl4f5H9Pz57/J8OzkINnTQ+zPI7vXagFQ0n393dvNJM3lzr/sqV7a2ylM/3N8KwLGWWFXe7bXj4sByNOeK/f7T3clnkivD8nB8c9ZrpRhB8Z3tjlGf8yePZeDSaL/74/sNPDk9CxtT5SC6yNhNfu3ypV+QciXZ3eKez1u50Ww3otIMb13ivv7G5HirZioM4DHcGPcqzRVk2Qw5Ex9PFy9lcO78CaqNvi9PIu0CWusyxhggv2G810iX/zYUIY3V87V42OGWVradxz9JmxD2KvYdUXQ6rq6FJ5+g60SOAezpRlYKqgkc1WvXtcwFfwkoidur54xCRM/MIGrMdmV0IL5Wy9a8EnDEE0EorqVSpZFkWZbnMs8lkfDI8O11kPIi7YVCSjhljyP7qRv+vb6/1w0AA/M2dtW+v9wFgLQq+sdE/LMphXt7ttbZD8UvvvrW/feXfPNr7ydnkrChOi/JsWfzgbPI/PdzvpBGQ/snJsBEGC8Y/PDpLSV8PxC+vd9/tt7+10f+DDz8Tx6e/sbv+w8d7y/Hk1y9vlk+e5tP5J2fTm83GdhB8cOvqZDwr8+J2p/Hw+GwqFaSN33jn7tfWe4M0+rdfPM7ORpmCb9y
 
5+c217j//6N5plpcoFBfrg36nmawF7On58NHey7VGozsanp0cP11k0dkZFAUuFtn5+dl4mknFsiwHGGfZQaaS9XVotobz7GWYXrt9c8nErZvX1pJwt5X0IqPlSVtr0ngw2i7zBk2g3ZJij0BFpDwF+kH1IKu7H1jzklcIjZzbpZ3i95lCR0/kaqAIiDlr44KfZC5H1RsCZvi0Os6jHLyn5VEI3qZkrB5YRbtDpMcw1qEJlW1qK+cRmV1YrEkTSU3SuvPMhKC01lLJLM/PxqMnBy8/fnjv40cPh7liIiyJSsJc67lSD2aLmZS/fTw8XGQbcTSS+ufDWQDw7qDz09Px77w8+1dPD59N51/ttb/a75xr/ZPhBJXeisO3+u3//vbu+73GP/tPf/FeFPyf3n3tb1za+Md3rkxL+X/7F/9OHx0nnO8NJzf7HQj47d31QRzuNqL/90f3//hwOMmzZVG8Nmg/HM8ejmdrnXbUTg9m8xzZMon+/cf3UZaPTs6fjmfrrWY3CbOz4+DJoyxtLAjTfuefffYw23/eyhYTLl7MlrLdUwHb+/iTrFSD996TcfRk78WSC9XvQ6PByuzs2f6Mc0piNpnAoyezrJCjcf70ebn/cjhdCCFUUUitx6UMhIgCAWgtf7LLZv36xYor/PqJilSdF1FB1J3wqsNxwQdy7pV9TIyJZnmqskhyH5AINAnXjlVnitzVLKCdIvbGgHHKHPfVjNLKgibfW5dltwu0XKmrPxgdrGsbhJvtyBEAzENqtNZIxICQiAEA4xRw0lpqtciWo/nyfLY4H03yxTJoNvnmtZ5UgWDnUv3obPi3Lm19uH/8Vzb7gygYST1WWnC2UOogL+fT+W9e2mgG4miZ/dbDvXxd/t2rW7nWv7139K9/+tEO0d/5/rc3InG33/nnjx4zJS/1Or/38PnfuH3laqcRhCxot17rtvZOFSP65huvncwXB5P5u1d294Lwn/34I0a0zPPtNBZB8NPT
 
EWolFvP3d9Y/Ozj5leu7x+fDnxzsiyh6ucxn09n17fXzkyM1WNdpqvLia4PuT4r8cHJWdgd6mV1VmifBpw9eBpyJZmPv+Ly9vk5PH8oXL4CFEKei39WnZ3g+Ut1OO42LvGDZfCFl3EzLZSbiYDmdtgIhlWbEpFKzotRE3EACcXVraXRekUafcXLf+iG/wCweQnVN6N9UC57qUSF7G0ddTrVaBBIQWIBaiHl6rkGzNkuICIhh5bG7s8CWz9VMZnKumdtEh5zpXQEYa1tMoTufyO6IgnaFMJpdwH1ZiKFWAFSKFkWRLbNlKeezxXQ6L/OCNDUQR+Ph2WLRSNIbSbjfbIzzfBAFz2aLv3Jl63/67Mnv/+hn//vvffN6K/39e0+ePX72j3/tO39yePrtrcFoNP3dp8+3W43rrTQGKtJkPjwLArE/XbQbydvvvrWVxHf77YPR5D/uHyHnbDF7rZUMorC52f/5yXC8zJ49ePy13c020D+6tPGHQL9IgkfjxZ/uHd1KwmSr/zuP9qjd+3g4+9EvPr3/bG+xu8Nff+OzJ88PlTx+/mLz6mWxfamUcO/ho881KME7a2tFo6tPR/zzTx/tPWev3YZGozgbrbUa5Wx2Pp1yTXpjhzY2BGJZFuF0BFKFyKaAvWa82Ntb9vsyinvdjp6Nz4m2+p3FbNHvtYHg5XRxs9dhjPmxqVwiAL+U0iBgBbl1LluFKdbR45BX94+8ljdHO4YCJG2fJu/oi9zNhL9abSG8jxSAe76XW+RfD7JahW51/mqzrVaoJ2a9Y+jSAMb2dqf4qJPT3eDMU4EImqSUeVkIjkzKpSzOx+OD4Xg8nJgqJSklaWKADEEvs/zk8EW73+hvXum0302jaam6SfTZePb+dP7Weu+jZ/ufn493uu3rW4N7z/eeHp3s9rpfnA5Zv5PleRoGL+fLWSEL4NMo7SNdWuv90cHpkdTH9x78xuvX39teezlfPp0u7rz37pKxo0UWM3yr1
 
wKiA33zt1+c8Cx/vxn/6rVL7W73Z/tHyeHZt7cG7/Y7R8vsoNduBuK/+85X//jgJBHs8qBbIF3rtr9zZefT8eTFcDzY2exzHCKPkuR6HAaCnutd7LYkIZUSAoECjj75JGykFCdquYT5XNy/B2EMl7YDpeXOjiAqigKUZlqzIOw0kjTL5kW5jONCiLVOGIaCEANe3wUJHJV4Zeuw5FVijfLqoKzDl8APtz/Gesyv8i6aZ2lbyJstUQ06tYsYESIKchvUuFbaIuXaRKkZumAJz6wYJjCbjqH18WstqJgXAc2CDSRA9E924ASIdkMHIw8fOK7NV2SMCeSAUBQFap0tF4UsT0bnJ6fH0/FUliUQMG4fOmsWN4HWw71nZVHwN74yThJkPOH4TqvxdJn/4dn4q93WndvXP53Ov7I5eLoUjStXPjse/p/fuPlsuvjTk/FiMn90Nvz69nojjjd77Ww+eTmZXY3CX7u0MSzLB430//v08O1e82ojaQveiG79wcnwlqT3uq1L7WYzyvqM3Uzi33zrllTlH3/+8MXp+dvbGxvN5NHZ6Z9//vlH9+5f3hzI61f+3cHJ7OQ4DgTb3u13msvx+Wd7T54/fNhKkmgwkGkSZhl9cVT2252y2BRx0oqXo5E6HeciDDYGRRgiF4HgshHxQBAXGkAUWUFQHJ9AGLSaDX52StMJIuYcIlmWp6fTZnuWxkkoGpwFgsdCcES0WUpPJaveTy2O7YbEbe+4aoZqupjHNuPnnSTnU1viM/FMUw9l4oh2h1BA//gd24R/9lv/wSwPAkeKZqGFybdWUX1to6jmxuaxG0ZBMMadUnahAADSimwUyHl5aLfXNUYCQ0TG7N7J5gwCG9Qsy0W2HE8n5+Px+XQ4GU9kWTICJcs8LybTyWQ6zpYZAgRC8EBwzrTSSmsETJIYGUPOB5ubV+++HW1dL0SERP0oWgBqgLIoIiH2lvl6FGrGJlJdMo9u4Ow8K07GU57ElxrJIA
 
oXpbw3W76cZ3c7zff6raXSPzuffDGe//1r22tp9Mnp+ZPh5FK/myAKWfz48wd/sf/itUGn3Ujm58Ozg/3xwUss8ka7qRtpORrHHJMyu7Q5SDvNaVFmo8nLg+NZpuL1tZjxG1e2H9z7gqTSWqfNxmKxWB8MeuuD8fERaRqNZ9liITgvEHnS4GFIUi9bHb51ydS/8bgxyTIkAMExCBLBaTZfMCaSeBBHyzxXgI1QpEkYiGA7Dtth8Ob64Eavw6CSf50eyVdlQAWyeuiwBuNqcQRetBUvHukvaBCozVIgswlZdbvaM8SIRD2F6FW4Jm3dbfsYdq38VvBuXtnZhUCgmd0s20ZMNWkCrbQmIjSPmHHARQBVm2GGeJXSRk3LUipNUpbz5XIxm56en52OzmfjUZ7lpSyLIi+yXJYlaQ2c8UCIQACilFJpigKRNpIgjgCx0+5sXrume1tLHp3m+XC57AueBmEYJS3BR1KlgqdhECBsRkE3jv7j4Vkm5ZvN9N2d9eeL/Omi6IZBrmQC+o1+eyMKfnY+3B+OSqW/2u/eOzn6n/f2954/S89PppvrOk17XDenk6/K6fTzz5+PJnme72yubbZ4JJqv3bp67/GzIgXB+Vff+WpZSk302cNHe/svl1mezbOgEe5ub1watIOrW6dn40GvNRpP2kn/+u2rf/6DH22u9+OQt9bbx6dqluV6mXOSLYgKQjocZk/uMQRgjHe6zWxJpUTGIQyJCyjydrMVrK2HYSDPz4QGHcWzKOJpQ29uta/spmGAXnnBRQiiz6pXg7USbyGXOvIj61m2ArQ/y0HTRF5tZZ790u0pV8UQVl5CSmlvbc+ynoqpoWNIiKjcE2CV1syt4eREyu4Uh9p562QedAB+vZBSSkqzua/WpZJKSgD7pFqyTwWlvCzHs+loOs2zLC9LJaUs5Gw+G03GZbZUZSlLaTcE1YQAnDMRCMa5JI0auGBpGvabKQ8FRvHm2nrjymt78fpPDs4
 
wf9nncEmNh6OzrNnLm102HZdRkwAeI1zdujRTellmAOzW5tY0n//kYP9yq/F+v/v49OiTg0NdZO/221+MRgfTKVvOscgeB2EjYleXc3r+LEK8EzRPz44H7dbbb91+vLf34ejs8o3do9Pz/mBAUr37+vWP7j86OD67fuXy6zevPN9/eT6f7e7uChEwzsusiMPg6s5Gq9GMEAJkoRBa6vffeW9UFE/v3Rv02u1mmhfl1UtbGpDOhtcubWV5cXw+4owrpbjAbjNdZDnMRpyxrMg5w3wx4QCMcyoWej5UaRKSzhfLQlOcNhZhYzIcz5b5WVZ8bXv9jV6bu/gLw2oLLefgVkuIVuJPZC3EFUh5C7YCcVX4bBKe5kTz/ENy+ScX90RnG7odmEkTkVBaItgHWDGG2vvfWnNEs7rKPT1bgdmdnuyGvyanaUpFAQg0mOL2UpayLAslVVlmebbMllmeZXmelfksW0opEUiTlmVZSCmLcr5YTheL5WyuitJuCWqeO0vE3Tp50sC0RgTGUAjOuV1HH8VxpxF306TdaoIQFARs4/LPoXPvi/tXhnuXIiXzJSjZYkzIZXt5Op0uWFEGAZMaFiePG1HcScJ2q4MHI5VlrxeZOi7uPdBRlO6enRXnpyeCzUaTq4MecX4+HCPATKrRaLLe771x5/Ynn95b3+xvb27MlpmSspHGh2dD0nBtd/unn37623/4n5SWTHApi2VRPHr+8uXhyecPnvV6nWKRkVJhGm31exu9XgDUabeOTs+nWXgyWzz47LN2I+m125e3Nw9Pzg5Phy9eHAVxyJCtd9vHJ2el0o1mYz6exEkcp/FwNI0QW712WUpcZKVWQnCOoMsim+luI02bDS0VIgSQqXJS7D39Qspn08VfvXn562tdtgowS4dWQ37JEmRwURrHrUj2gdeV1epVpFf97mrWojDhKyRbSufKUip/yDNoCQACEEWgNBBo/yBRbeo2NCmlbHDVTh2zolKhL00i
 
AAClZVnKoizmy/lsNpvNZ6Usy6KYLmfTxVIWWZnn88VimWdaE2gt8zKXUpZKuwfOIENun2pjFijblDworQk0IhcoOAejLBiLwqCRhJ00bjcbcRxjHMet7iLtHcyzG7S4kuhyPGZaFYTEWTfBSOswwDBOwig4G8+CfK5UTjLMF7OlpkajIUqZRmK+mE6OD3Y2NkaylU2nd65dns3nnWa6v/dyssw5MMZYp9v5gz/5s2aa/Nrr3yLS//K3/8Novmg10q2NdRHHAYNOKI6ns29+8FZAsNDqeDjKtC7yXM7noGmt32k1kkYjPj4bCeQ6mz1/efTe++932q1///v/sdtMMylzonkuMQyhKN9+87W8KOaT6cvxZDbPOt1Wr5UEoJeLZRSF/Vaz12k1kvj0fBgGQVEWy0IWUqVRAKRJSS1BE3CBXKqCyTjSfDaccv4XrcblNN5JogpQKxissaFLRroPFX3W9h686MmjLdp3gDZWBVK1nY2PbAISahO5r7xkxoSxQIgbl98WUxLZBymCW1ZhlvdWZgq5DTdriUopZZZnk+n4+Pzk7PxkPh7LItdS5UW+yPIAmdRqkRfLotSlVFIVUhERN1vbMcY5E8yn7BEQTWYTNSEQR+QcQs5LAKlUzMNmFMVR0IzjOIyAYCFlg4s0TuaM3e6kR8t+fjoJgiDP1SCNoyDoJMlkOonDcGtj/fh8FAouhBBax4jLPG9FkSiyzfUNEYTzZSnl7MEXD7bWN7a2t8psqaRaLLO0kbxz906/1/3wi3s/+NHPVFn+5vf/0nA4BMYODo46ve5av9PpdS9vbGitHj58HoRBwNjZ+agoihfHZwcvj5SU/UH3vbfu7G5tkFT7B0dT4vcePSkWs1/79V9f73V/8eM/DzhLk+Qsy8Mw+OLJ8wihncbns/k8y5IwjMJwrdduN9Px+QgB0zgSnIdROJnOkGG71Yzj+PR8hJDzKJRKkgYlVZrGhdRmG2ulyuloWC6L+WjO4
 
ni6u0FpjK5g14MTfbWaNzXrxOjIk9w+oy40qV2U08cjrdfjntMBmuwGCcavB7cxGWoAl3x3XpsWBv5ak0b7hHcwViSCBs0INZFyRUNKSSK7gI4h5lyAtSeoLEtZlnmZn4+Hh4cvp2cni+lMlbKUKtOqVIoRlER5UUql0S6yJ0JQBESaA9MAGkAAlQSAIAAER47IGBM+ikEEQAEP4igIo6ARRUkS8VBoLngYxs3mUbr2uxOVsPmNiG80wvOJ7idpu5EA6aPTMyC9PuiGcdxpNvIiX+/3EPH5/kvGeWdjrSjKo7OzxTIDxP76xrVr11SeSa02L106Ozl+svditlhub25c3tl+ur8PSEqqLx4921objIcjALx+4+pX3rjz4aefvQTYXuvPpjMeBVmWX7+0+/OPP3vx4sDE7zhjr1290u92P/nii9licZbJl0+efft73+l3upgvRcB7G5vTvJiNJ/PpvNNIllqNxpNlXiDptX53o9+5vrsxns6KPF9mRZbl/W47y/OAB6BBar27tbG1Nnj0fP/g+KwZx6WS86IslGokcRSKvJAh6AhUPhljL5Bau0eZO2Ss+jpQ24XG56Vx9RFt9lcHYiQDwirxCWjMTASt/fJfN/7WAYIq1O7PQgAU1jTVWqPSQFJKX3nKAEgIEzMqykIqleV5WRaFLMsicwuFCBBLpbI8K6XU2aLIFrPJZD6eyaKUpEutpNK51mUptdJSSjCLQ2zk0hUWasUYAHGJKIkYAucsCYTg3CyOY+bZx0ARMhGIOAyiKGo1m2kc5UBBGK5tbNDgyk9l+mL/SWM5/d7lpIk6C4JIcK1pMp1NZ4s3Xruxu7P9/OXx8xcvACgSnAiajXR90Ot2Wo+e7J0NR8dnw1YjVYCdXu/uzduz+fzTz+9P8/LF8XC93WilycuDw0iIACAnGk6ng7XBeDpdFsV0PN0/OrmyvfXhvUcPn+31d7azxWyyWLx1++a1q5eeHBzNJtO007i0u9
 
VI0zCKAs7zZbb3+Pna7s5wOnv++OEH77/7jW99689/+vM//ejTfrcZtVMgkpJarcbV3S3OUANs9jvtdmuZ5VKqUspGmkZRIAIRx7FWMi9VnhetZrqzPsgLeXQ+jAMRcM4Qi1Ii55yxXEoFiKBQq3KxfDlbXmulfFWlYw2XUENh/ScPJheJtD/bA43z4+qaq+oN0ohu32W3sSi5oqpVU5eAQJgrS01EpEgXZVmWpVKyLAsOKIKAcU5EWsk8yxZ5Ns8Xy/l0OhmPZvM8y4hIA+ZFCVpHDJhSAoAxLMqyVNKkJ0mTlrKUCjUhgEbQRNzlOYmII0NSqJEYA4KQs4CzNAjSKNKkF3kBpEUgEJgG4pyHYRAGIk2TTrMxnc8ni2UUha20wQc0EOLNG5dffvHJ2cFep5220uT47DyNwlazubU+2FjfLDVurg0Q8Xh43u/1sqKIw4Ahe/7iKI7CVqs9ycvj8Uwg3Ly00wjZoLt9Np09+vQLu202UiONbl/d3b919Ucf3d/d2uAAHDGJgs8/f7C+sUZRMFvmB0fH77z/Xgh6d9A+GY4eHRyR1qR0Mwg/uPva9s7u6dEhZ7hYZFEUh4y9fPLkm2+/OZ8vijIfnp6urfeOjs/W1npr3W6v01GkdjbWpVKCiwBJK73W743Gk8PTYasZa61ms2WeFXmeh1H08Nl+lhWB4K1GMo/DeZZLwEgIpZQmSqNIKlUQKQVMSV2Wv/9k/7VuczuOtOdI7Vc9OgjWV1vYx6rYWOmq8iewD4Eh/xBEq/cqe7By7cHZojXnDNyzu215gEBkZJ65XqpSyflivsiW2XIxmc1Aa855EAaIyBFBlfNsOZmMFpPpbDafLpZZlhdKm4amnLMwCDjPQZOmoiikCTMBSEVmgy6bbQVAjvYhBwTIMGBccKbRBF5ZFIoQkTMslMrKclkUseABF0EQEJIGUAg5QBPZYpnNF0upVIJMypKVy+3GIKdg0Yjzs+zxZHQ8GseBaDX
 
SjbW1Qb+viRaLRb5c7u3v9zutMs8E0Gg4C8OIAeRZnmfLVIg8CsIoWd/a1oTHJ8fZbNzttUfDYVmUYRA0m+12q722tsbZg/l8gchK0pzzLJs/Pzi+vLuZpM2rV5KtVnN9vT88OX7w4vH58Wk2XQjO37x5dWttsJhOy7IMgiAMuS7L4XB4+85NhtTrdD7++NPZfJmEwZ0bV9+8+1qRl81m4/TsfDJfXN+91EyTxWJeFFlR5M00aaSZVroEtczLl8fn82VmiQxRcB7HYTOJI8aXpczLJSKmOpJSIWeNOC2UEkmiFJ2PJqO83E1iiw/wGtmqcxPkAXBL6WoZbKOj3bN8zOoL7crsCBHJFSNTVaVELvtvyXole2V0qtulg4iEJm1L0ZUsyqIoisV8djY6Pz87z4tMgw4QQsYF50A6z/LFbJ5n+VLKZVGWUhFAwDAWQgDIUpZKlVqTUlIprZQiUkpLbbOnAMamRPNoWq21WQAPnCvGjD2Sci4QNUBWllJlpdICkTNknAWcl/bxSCiISMplKYGglSSDwaC9uf2UtX/3fCqnw/fzUTPkJ8P5bJFRGj05OBr0unEULbLFaHTOGV7d3Tg+Oc+y5dbG4Ma1q51uf75YTqbTHaL5fPH4+Yvz+WKZl5sbW8D5YG3t4d5LIhJCcM7DKFkqdWVnfa3Tevni4Hw8vHH1+htvj1/u7R/s7W9vbrz/ztvNZnN0crqzsdOJoiBgj56/DJP47ddvfv1rHwRxslzOwygw9f8sEMBwdnraa7WIi/7G2ht377QajVa3vZzOF/n40uXLN65fX2ZZyHkjbTSW8+l8JpV6tn80WWRFUc4Wy7KUSmkbrAEATVLpuVJBEAjOdZFrgABgmWcMIEzifDbXPEz7g3kUJXGUCqFddKcK3tvMYG2jjVoyp+7gk4vuAwJoDW6xsg2tG9iRKbcgALelPKBGV0f8SsDfx/YFIiolS1nKspjN54v5fD6bz8aT6WyilkuulSKS
 
nCFjUsM8z8s8L5WWSmmtOQEiJIxzBKUVIJIGqaSSqtSkpDYBeUQMze4TyMCWh4LZlNY8m9Nk581i0dI9d8asfwqY27fJJHwJEICTJg3zPO+kjUaaNBuNKAohavTaXRyfyNMTORo9PjvMizxIYgVwY3vr1vUbSdJQWidxEgVikWXzLNte722ubwzWt4KoofT5YpGJMCo03r3z2vOXByfHR8046ne7rTRpthpnp8ODo9PpbNbvbybNzqA/uHNj96cf3X/+4uDWtfh73/zmk63HP/rFJ6DZ22+81Ww05WsyYKzsd5+9fLm+tRlE43feegOIsmXGGD84OjobjstS5vMFIF55685ar3d8cDAdnl3b2TGLsLWSN65cKvP86PhwMp4ss6JQdH5+Jjju9FsMdTsJIQnXuq2iKKeLbJ7lpVJKKkQw0z0rinaa9JtNwwpFKRd5vsxLGXDNGJcq7SffvX5pJw61UlWu6BXrE2pOknGRwBKp3/5I2yXJaBeyuWwmeZiaOJTP2ZPWzDpolUWLtQ3hDSsLrXUp5SJbzuazk/Oz8Xi0mM0Ws2mxmDOlCFFqPc9yM8OyvFBSEgBjTJitHAAJoJCq1PZBpdzEoZQtkUPGwkAEAdeMmXVt0ixf18SQcbMPqNbkHjuqiEqAkEHAGRMCAZAxpfSyKAutBeMEUBApUjFApOSg2Y2TJFeywdi4KEUcJoKdHp8kJKMoTuJod9C5feUyY/zw5Gh4fjYaTUqlwoALzqezpdLAg0QE0WBtu9vbmC/mWSkDzoXgw+FwNh1vbW5eu3R5b//Fw3uPs7KczTNCAk2Dta2rly//7OMH9548H4+n3//er6RhuLm5vrE50LJc6w8QkQueL9ud9kCww7/yy7+UBmI8HDa7nZCJsizmi2VeSgDY3lq/de2K0qqZJts77+ZF/mJ/LwyDQb+7zPL9/WehwHYj2dvfe/D8aDpfvP3atcvb671WNF8sc6nDMN7Z3l4sl5/df/T4+
 
UtZlou8kEov80IWUsUUhKKUCgA0gCJQIqZGlxifa4o1dQLBkCqv24eWHFJ9vMnkkmw9vFXYJvLoiNvbl+DQqXX9OUYm6e4rSyrCdHUkzmytdvEUWqqiyCfT6dHZ6cnJ8Xg8KpZzyjKlFUPkyEops7LUAKXSpEkAcM5CzgCYVkoTFFLaPecEF4HgjEEhZV6WUgJpJMoBCCEOOTGmSlkqBYicc84YMvPgTRfGReSBMOWljLGAcc6ZMVOkVKVWjHFimGsCwEaatJqNfrcbxkkhJWTTgtJZrqVI+OBSSsvs5GWe5be2N+IoODw+/OiL+8/3D5ZlIaVuN9JGFCRx3Nw/EFEjjeOsKPO8BFCNMHjx8mCjP3jt2nUiPZ/P0yT94O23tJI/+/BTU8NbFosyX671un/7r/7Kh/cefvT5/WtXLokovnvrxkZ/kERhnMSMMc54HEVf/8Y3ci1J6vagNZJqeD48G40Xi3m3074bh5e3t25ev8IZ29/fD6KoVPKLR0/2X7ycL5ff/cZXEHUzDZMk3hh0XhwczMaTXr/7/hu3Nza34jjpKsVFoJQSjMWd5nq/vVhmjSQ6PR8fnY1Kpcu8GI4mCICCAwAyBkzwuKFEQI32RERc6ZYQdaa0oXVjHDrutBCygNKueNRp+1rRKLkaJVDOeaqVnoB90AC5bJF2BRmgNdmqKp9lNTboZDo6m4xfHh+fnp7MxqMiy3RRgJKkiTiXpAuptCJNGjVxhmZHGmOjmOdoEwBnwIUIozDkopBykeVFURrTGoGAtJQyB+DIlCaOLImiKBSylKXJjUoNSMQ4cIYIkWCMcxGIThIrgKJUpZQaKEIRBEGBwJQmZI0gEIhSK6bkMlu2kvhrnfjjvLgn4vHNN1U5vy2gODncOx91uq295/tP9w6yUs3meV4UZ+djxlgrjbVWy9lw0Gkdnk0Vss21te2trTt3bkkpJ7NlXmgmlFSy2+197b13yix7vr937crlIAyJdCONte
 
589xtf/Y9/+kPB2WI66Xa7jSju9QacQZJEnHEA2Nzcvnvz5tOnjz+7/zCMo/lkqkm1GunN6zeDIFhmy70XL37+0Sc33rj7+qXLy+n4z3/+F8+PhhGot1/f3d3cSONeGEbtduvsfKy1/qX333znrbd5EDMRj0dDAAaolC6Pjs8+ufe00UhbrdZskQvOG3G40LooSs0QlQICBIXtpg4izYVqd7e31v/K9Z231zrGdkVbiWkxQ3YLGQI0z7T0vrvFrtP3jget2kfn/dfj/LVNGWv2g0/vO+MWwFoI1j8BBPHR558OJ5PpZCzzpZaSa+IIKAJAVECylIjEOSJxwYg545e5QDtjLA4Dbda1KT0vl4tllmW5if8zzgQyY5dIQM4w4oJxnkZhIESBqPNcmVAYY1xwwZmZe4ngjThinC/zfF4UUlHAMYmjNIkyqRZSKg15URZFOZ3NE0IexXGQrCXRb261QITPs3w8kk9Ys8NCHE32T4Y8ihfLfDqbc87jMOitdTuN5LVru2+8dqvf64og6Owd/JPf+r0g3rt77fIH7761tj746Onhzz96EPHiv/lb39cgGu3OX/r2t2bTyWw2XdvYjuJYnqs8z8Io+d7X30ta7aKQO5tbrV4/SVPOuSu+hm63u7W9OxufHR8dTGazZhJvrW2sr69nWfbpJ5/de/pccNgYdGfD04NnIo6Cv/rLX//F/ecaYHNtjTOBjDUb8f0Hj+492v+V73zre9/9Xqe3rrUu8mI4HMZRMFsUw/PR/UfPJ7P52qArlUyTqNVI0zgadFpKU1GWi6KYzpeax7y7RlECLJDA3t0Y/PLOhoGYtRstKtHuZmM4VWuwTwM0Vpgr/TXVbX7rMWdZevhWVigg1OMADt0O0DaGiqu75Zvovbj/+KHKc6F1yJgABEQym4JzxqQSnAkec7M1KEFeFHlRaOeREQITQSAEcpaXZZ4XeZFneVFK++wmJAIOXJg9VpkQvBFHURAqrRExiaK
 
As0VR5lJKAhOnIgTBWCMIQiFMrACIkKEQXAiuCMwDaqSSGjRyliRxHMfLPBueH7W77dvt7W/IJo7pxTI6ba2L6ai1PMry7Gw0KxR1uu1eM9FSfvP9N69dudzrDcIoVqoMg/DWrVvXdj/++N6j/SQKv7j3lfDNm1e2fvzhgzQQg8GAsRgAdacnZfHk8cMvfvzzr7z3/tvvfWs8OhsPT7O80MA2tna7vXXGeBTHrljWJpL7a+tJowUMtVJbmxvr65vno/Mf/vwXn3z4edzpNNstfXjSCNgkZHmccM7eu32Jc2SIUhX5ovz4sy9++tHDv/Ir3/2173+fMT6bzQBIiCBJG0cnJ7LIHu+9fHk6FEEwXxZxFANgEkdm6/RSaUCc5AWLG9jdhCBm7a7iYavbeWOtIwxyXBQdXRTI1GqC20jGZIdMYQcZ1BnvxkGTLE2iO9aF6O3WjOSNWqt7fTmfy1c5UcFKuTKgkIulAC3sIzq96kapCYhCLjjnJtOUF0VRytIWdiDnLIrDVpoKzhFQMKGlmtvqT9Jamx0cgEEYiEgYpS0EF4o0ADDERhIpHQJbUgakNAcQCIJzzplGKksZMJYEIZGWRIr02XzeCMIoCnkgBOPdVuvmlSv93mCR50maJnES8iAW+m7KZ6rxbrf127qM8v6VsLXZagh2QqQ2W+nl9X6v19tYXwvDSBEAchEEhBAE4d/7m785/2f/6uGzvdl8cXx8evvGlW+8sb6zscbsA/hYFHGZT8fDsw+/eNpb382z7M7dN9e3Lj1/+jiMk6TRFkJEURxHEeecITJAjaSkCsO41e4209Q8u0RJeXh0/Gz/QJLO5nMAGBfF6Wi2Nmhv9LutRhwHvFR6scxHs8Vksuj3Bv/dP/iv775+lwfxYjpSslwu53t7z/YPj569PMjyfD6bTybTXquVRqGUsihlo5FIqc6H42VZLotCKSUaHaW1DkQep81u52/fvf56t1FKiYyZCJHDUBWHh1qw
 
qbI17XuPTct+9pkYFkMuFK+dEkdHujaw6jKb6DwudDEtF1k3jRECNDdBHLfujpmNQpQWDAVnGmhZFFlelEWplEY7A0gI3m21Ntf6RDQcT4ssF0LEQaCk1JqYyQYwxhnjCAhIWiFx4+4IzsNAMMYLVWgixpkg0giFVpyzNIqiOMzLEhHSJEKAolRZWRaktFLLPIdAsCDCMARCSbrRaCCy8WSUL5dbQqRB53Yz/Xg8XhMh27n28/sfbu49v7LWu355O0G2vr6ZpOn+i5e9bqvXG0RRLMKItC4V9QYb/7v/+u/8i9/+nU8+u392cn5wdHLzylY7YM+ePm61e81mK5PZx5988uG9p61WtyyW//b3fvzg4cO/9/f+wdUbt8+Oj0LGojjt9PpBEAjGzMIBk0ojgk6332l3ZFmkaTqfTfdfvMznyzAMpVSz0QiI5kCn56MHfF8wxjiP4mi9371x9eqv/co7b73xVhSnJydHe3ufnp4Pn+/vLcsyWy6fvjweNBMGsFgsu83GlUtbjTSWspRKDcfTk8m0yEulZBnEMNiUSavIchGlcx6sp8k7G/0AmfJbHxlXxlKd5UsXUoeaCieya9vs4g1vkvrYqFnDSVjVgRhAe1fJl0Q5LrbBArJxKLSPWAIgIKGkVIgISEiC8ZAHjHMA4EwTQVaURVlmRZGV0i38RSaY4DwUIuAMkTjnQSCyLAsED4MgK0smlQlbcIaCSJaSNEWhMMF5xtBEeUoli1JyZGkYlkIXWmuiQARRGABjQRCEnMdRpLRWtBQKAwxaaRJGYa5pXsrZdDocnXNOSlMcJePxKA7EcjBYUDJXwcEie342Srvd3btfhUc/bTfi3c3NWZa1u/1mms5m8z//6UeXdrc21tcbaSOK4m5/g4uw1Rn8t3/373x+//7PPv70+YuDn3366LNHz9vtZpqmoRDn56PjszGxoN/Lnj1/lufZaDx69+13Xnv9zVk05EHQ6nTSNDY2iR94RCzLQ
 
mmVNBp8eEZaTaeTg+PTQukwjERARZEHQdBK404r7baa/W4nTRs729uv37nb6fbm8/mDh/dPT09Hw7PDk5Nllk9n81lZAuPrnSZTajiadFvpG6/diKPw4Oh4/+B0sVwi40iaVIlRqnuX8iDWRKwVLqOYgvCDrUFDMLtEAlxhkSYA0OjyR+i8bOeMg9PgBGZz5QqeF7LzVsVXBSTg0KixngL1J5CvKfF1JNYJE7lUGiBENJvGRoEIAqGVLgoqyjLP86IoCynd/olIDAWKNArDKCzK8nw4jqJAK2X6RESkNAdExs3m3DlpxnjKeBSEXAhkGHBu1tAFXGRZwRDTOCq1XshSaR2HASIulzkHxIRzzuIo0gCKdFnK4WIZKcUAGJFZx7LMsqIoAVicpmmcKk3rrCCt3mrGzy5tb8fJrTTak4vR9LCb55PZdDqbbm3u7u7SycnJTz7+ott4trnWXet1WieH3e6A8YCQ3755+83X747Ho4OT46OT0/lyeXR6tpgvgzDZXONBIDhjKkrCra2drc37D+/duv1amqaL+Xw+m8RJHLrAjYkYSqnLstRKN5O00+loXYIqTFkjB9AIAedX1jtvv3b19dduDza246ShlJ7NF188vE8ERZmPR6OyLONAbK/3F8uciPphGAb85eHJ6WTa6zTfvntrc63/yecPv3i0BwzjKGrEkVJqHMezsCUBismIdbq6O9jttb9zbeeblzZMEZyBoS2udKGjClPkYkuVUehodCWf5DJGfim5NxGoxppk1qXZcGdVPuLpuYZUv/xJMGQCgQPEIoiDUDCmlVpkxSLLZF4URVm65w0CAeMsCEQSBlEUxVFIQMu8WGY5YywKhFSKI3BEYkwASKlyJRljwOxDwky6qCjKQpYI2GrwRhopqZFhgLzFmAnpGUMCOQNEwThnjCPjyErGllmeSdlqJN1GI4lCxoRUMJ0viIvu2nocJ9lizri41GhebTY30vgX87IkosHOsNFqqg
 
lNZ4fD8635NIziwWDQbaSCY16o+09eaHqOhBpZVpaMi521QavZGAzWu+3Ozsb6+3fvtNrtKAyBdLPZ5pw/e/rwj3/8IRAxVKAKxrlWeb6YzecN3mpxt+rVpCzKImdcrO1cSRuNxXQEpJMoVFopJYNQ9Nrt7fXe1uZalKR5nj14/HRZSMFwNl92O61eM+Wkx5MpAyqKcp4V/U4zK9XR2ehsNNla79+6emm5zP7khz8fjqcgBBdcE02XWSGCIu3LuMWJxSJcNNuNVvPvvfPa24OWts/F8LFO6747l8ijzmpdr5LNr7YcqQqLmrVrNude51FwgSpnD9i4fc30rEHfpuy9WUEAIBKzQJMzxpiUSipVFHKRLfOizEupTZEHACAILsJQxGEkhACGZu2Hto/owjAMmZQiECIQZHZFNAs47QNLqCiLrAQkEIwjw6KU56NpFIZxFJrWFaUkoHYYaKK81JyY4BwZkq1W5rIsA864EAqw4Gyt2RgMBgQggfqDdWBcI2s1mygEMZ4myfsxa0fF42UhARut9uNRHNJxYzhuPn/ywZvv337tjSAMHzx62Gs12u32+WR6dHiyKPIwCEopi+VCKl0qNV/mUlO/09pe61+/cmVne+ta2mp1O1euXH97OPzxZ49PBZyeHDTb/SCMhAi0UmUpMQg4Z1KZ5zyiCAIRBDQbHx8dnhy9jKKw0UjNyqxWI71yaTOOAkXs6fO90TSbZ3kplVQqTeL5fCYJDk/Ollm2zItBu1USHZ+cTsfTNIluX92+cmn7fDR7+vKIEBuNlCMCQ5HEQ+JjasxEpDUIpEyEZdL4jWs7d3pNpezTZRjaLb4McWinbpHQrn90j0YgW7hJFd25Pbh9QZOPENmNh92xRABGszNCMFstmZXyPk7lZ4UDNyJp8/RNJoihCEQzjUqlZ8tMKkVSyUKWZVlK6ScK54wLlibJ+qDXTOOiVOaAQDDGWByFYSgAKImjspSkNZAG4L7RpZRJFEV
 
hsMxyAkriWHBuqvQ5xyQOT0fTWbZMomhRlouiEARJxBhH8+iPOAozKbks0yTBQDDGm41G0kgbjWar3Vkoef/h/fW1tfDS1SBthWEYx2kaJw0ukijuz7NhHh8tM6m7i8uvNYvpXM2/ePTF9cvX37j7zs727pNnT6aHB1EQ7GytS6nSJELGxpPZ0dm54GJr0Jgvl9li+ej5i+f7L/u99uWtjffffqvT6TaaLUbqP/zpj+JQ/Pqv/bUgbDTa3SCMyrIkojiKzJOdGGNRlJRFLou8LMvpfPH85cH5eIqcpa1m3Gwo4MDD0TRrNptbm51SytPTsyd7+804VArSJO60GuPZfDJfjMfTVjPZWetfeusOIpVlOctV1Om8s76OnJdSglRBFA7ny2f7w6kGPZ/xRhMaretrve/cvPyt7QE3qCACArMPmNFt2kXTbVCSmXXrZLFrF0Rax4WY21KZ/JcubumIcBVyaJU3+WfBgLbEbbzp2i4SCKBtCh1ACx9r1ZpAkyxKVUpTzImamA07oeA8DII4DJMoSpKYIDfPfmPIk1CEUSilBC0FxygMi6IEpavNShyNB5xJIRhiyJmJkHHE5TJfLPNlngsCXcrJZJpJRQBSSq2p0UjjCKMwCAMRl4EG4IxHSRInaZw2lmUZ5jko1Wq1ev21brvfSJsiCKIgYpyLgG9E4XY7PZ5l/8P98U/Pxq2g0dncGBfT2fDw/NGD13Z21vtrX1vbHA7PHjy8d3Z6XBTli+MzZCwU/Prl3WWWCcZuXb00mU4WWW60Uhjw0+GQiVBr2txYOx7PHz7f/+rJ8fa1O0EYg6sSV0qZrfUZwzAI0rTR7q21z06KstSAZSmTNO11O0kcD9YGu5ubWlMYiIPDw363szYYrA36Usmzs1EYCNB6d2Pt2tbabL6QSm2tD6I4ZoyHTZamjaTRjMJQCBEEotT044fPPj3NZixhACXwZdJs9/v/zVfu3O6kUmm3IsOqVJfStAkkF9m0
 
jyFgTvGiY04bM9VOudtfccUUdTFOs9bXFX+a/UIQzO7AJrBktxAnv1sjeXsDzHVQJEEQBFyRVrJkSAhUSqm0AgNsRMZYGIpGo9FKkzAMlFaT6VxrzRCSOOIMw4AzhELrUirQmnMQgmnFUGvBuUkpcM4LKfPpjDPebqSc86Isy1Lm2jzNjIBIa5JSMc6QQBItizIuyjhWSimgoJMmnPFRlsWcN4MgkGU2mpwul7rIhRBr6xth3DBPQfaPQDMPA+GcDxrJN9Z7B4tsP5fXuz2gzo+1SJbTfJKvzZ53A7bd77/15lvHh3v37z+4cWmLiWCZZS+PToui6LYay+Xi9du3AHC+WDKkJEmbrc50kSuFUbP7/lvpjZ2dwfbVKE6iMOQctdbmvsiACq0BASAIo0arc/XGbRGIz7/4vMwyFoSFNlngQkkVCN5I4sFgsFjM+73BxtpgPJ3O8jLLsyjgj/YOllm+3usMep0gjNJGK24kcZKKMIqCQARBGARpEP3RvUd/9uwsU6AZQy0LQBknX9lZ323EZSn9okskF9OxhGdD9I7rwJdtvLoLQ5UNclamJrdpElZ4dlFL912tGMXfUbsKEp/uJxdh9ZcXaRqbBdFKk1IkpVZKAyBnLBQMAJCzRhy3G400jQMhgkCYwATnLBAcEaRSUkoE4AxKRRwxYLwAaboXBgHj5rEIyBA5Z0IwAiqVUloLxgRjRFSWUgNJJakEHohIiJBzEy4lIE2UxkkUJ+W5WmbLWbbsNZvpYIDIsjzvdDqETKkiYFwwIXjAAyGECIUQXCBiGolfvb7zznr36WSeMn5/NHsskVjzWr8/oTxEdV4qmc0VRrfu3M2y5fD8/PD4NA74Zq+fxmGr2cyyRac7SBvNQATIeRhGZVEIIQbrG+ubu5vrm0GchoGIwsCg02wdYB5Hhpo0IwKKoki1ujtXbk6X2dPn+71Wc9DvP3m+LxgOh+e9brcsy267vTEYKKVe7O+dj8ZxGGQMO
 
+3219/pLpZLBGQi6G9t9drdMAgwEFyIkIkwDE9mix88ePCn957OxtMoSYK0PQui9W7rl6/tfP/yugCtwe164BBWcWkNg1U5nMv0XMSo2+HLsW3tdBsBUB5gRGif82qPMgVw1oNHxtzTFldaUd2USJSlYghFWZalKopSSUlaAxBnLOA8CAQXIgpDHgiNEEVBHEetNGmk0Xi6mM4WjSTkis2KQnDebKST2VKqAt22KUrpLC+5wDAMm3EiBEcAKdV0nmmto1A4W8fk1YAjk+i2M2VMCM4519rmscIg3FlbW5ZFTsS5oEBESdJqtjqdPiCejofnozMUQgRBxCJu8w22poUxdrnb2u0081Ii4neW+bSUgzQBikZSPl9Ot6L+7e3rnTjI5tOjg30M0pBjK42iQORSLubL0+EoEOLq5ctJo5PEyWQ8bLQ661uXe4N1Yedq9fKCNirerOIXQjAAQtzY3P7at/4SkCpm492NQRxHjUaj1UgbaQMZV7Icj0bLPAsCZsyDRqPBGaSNZpAkzWY7abYE4xwZFyIKglme//aHn/3kycuTyYITYRyp9c0pD9rt5n//3s3X20mplNlmwCfdq4Q4QR0ZxrmhVx7ZUYcsur0U7ctlgcgyY5Vk8rGnyktf5Ul0G+RSVUxSJQQsgy7zXEpVFEUpldndXQNxxIAzxtBYB4yxgPM0EEkUCs4JSCqSSgWCM4b5oljmRRoFSRwJIUaT2TIr7OITTZokAYtjJCLSVCqV53lRSkRMQtFI4rJURb4EAEWglUa3mC4RnHE2XWStNBGCL/OCcx7HsSY9nkwyrUnwZpJmSi2yBRCAkkoVSpZSlrIouQlMuIcy2NAbYhQGdze7m610nOVlqf7J88OfnZzvRmEqdNqg87JoBfHV196+eecttZxl80mRL7gItKKz8ZiLsNVpB2EcRclWu9dsdZqtVhIFRHY3NT9y5Ha7MMoO7eNNkDGWLeZK69u3X0uS9MWTB0mcaFVMpz
 
PGxXyZtZqN8XisVTGbjJZ5SURRFDXTWCpM291mpxuHIRdhFISc80zKF5PpD+89/MGnD2WhkzSlNC2TRrvVvNZq/N07V262wlxKR2UWMpqIedq6sBWtz0z6b5zC9Y9hJecYgUelx1dlJfhtkMDFmHzk0yWrajEpD0p7fMXmKMwazbKUiohzzpnJypvHwHDGWKfZ6HU7jKHWWkq1zPLzoWy3Gv1ui3OuNCVpI4rj8WQ6mmVpyFuNJMuK5TIDIrO7PCJxZER6Os+WeaGUCoQIuQBAxrjSpVkehVpLpYxzKBii4IJxRRBFYRRFWmcAtMwWw8kUlN7udiMRnI9Gs8WCtO51uuvrWyJMSOvFcg4MwSpaBAROYJ6hDAAILA3DJAg3W/E8K7+fF5+ejz4cTr53aTvH8P5k8uenZ3ca6dfWumtR0G302o02B5RKNjt9IijypeA8jJNGo9Fstkw4QrnHibo13NVScbtyABFAm122GQBqzRgDoss371y5+fpyMjw6Otg/OjkfnXXH55PpjDMYjsen5+Oz88mdm5caEev0NgbdfqPZYkIwwNPZ/OcvDp+eT6bz7Gg0K1mkG0L3BnGv/feu/f/o+rMlyZIkSxDjRUTupott7h7uHhG5VVZWVVNXD6iHgBnQPIBo3gEC5g34BvwM/gGfgEcQDdEsBAwGQC9V1VWdlZWRkRG+26aqdxMRZsaD3KtmkdUwD4rwMFPT5V4WXg4fPvzVby63r9oqIEiS9eaDmZZJtMXqcO2jL4sCz5s5F2P5qWtdqypbS6G14F8fDwa6eoInU376zvk5f5oUnL8DzxOJ818QnIhIFjNTs0DUhjrllLNUVajrqqnrF9f73XYbY+z7fhjHw6mPMaOmytN2u62rqmubKoTHY98Pp6E377jUirLMlhISZRFEFDNEcMQIqAgFUlYDdq5sMiRGWUIFRrXDNAHYPrZVCNuu8T48nPrb02lb1QTWD0dE2m02ZspIJprGU0ZsmdM
 
8ReYybksMZeaPCNakHAHRgdvU9F+8vm48/4eH056pYni92VxO+RZgBP9/+3h/ezr8V9fbb7rmZ7uNxWkae4QyEs1t1zVN45gZ0NCyloKddP0qZZ/kDIgqkkUkpTgODjE4V4y18lVVN5dXN9dffX3z6cPf/Nv/+e7T+2GaP9097rb7f/WvfnE6HrZtuHlx02yvBoPvP36eRFOW//jpy8e70+NxyEiz97rZpN1l1TX/21+9/a+/voKyurTcZX0yBV3ReAB4GkxbvSKep92f5G7OXPlnCOjq7J5DRmuc/4krPLtMePZry/fXTtEZXIVnwef54x2AiSkCsFkZ4wRGw+S93282222nhnePB0fETHlSUfEes8rh2BvA5QX1g51Oxya40XHfD+OkCxRa8ClA77z33gePzI6dihASe1cXWhoiOTYBImYkyQIAjGgpZQBm6scxZgnBv7i63LTtpqpCcOTctt2GUDVVU9WNCyFUlfM+isxTX9eNI1LNBm7dbA6FUbMm6GYITLRv6v/q65f/xVdXWXXMcjvEl7X/3eMJQP9st/t3D4f/6x8+/+cvb/5Pl9dX2yrnzM5V7abbbB17Wq8yEeGzNU5FNa3cGCJWMBWdx+n2y6fD423p28XH++bVW2YHgCbK7Jqmy+S7y5ff/Hzz1z5c7ff7/X6O0zRNYvBpmv/m999/Oc1D1MeYT1GOx5O1Lex2v7y5+K+/+UoRX7Xh266SmP/UJnAdVl/xyZ/8+MlOFgqIlYJqJcHhefao6CSWeLBu9LRzzf+svD9nq+dS60986tkuz+ntT9/RU4MU/+pf/2c5JiYyBO/c5cW2bmoiRMNhTrV3SbKZtHUVHKuqc9y0TUwionUVNm1jAHePh3GY+2Ho+2GcYoEARQSJC2Llq+Cdd84BgKkiADM7z6I6z6l4NRGZVdXAOdfWFTNVzjd1aLrWISFTHcK2bes6XOwvjN2YIhEz8367vb56udtdOKJxGoi56XZVVbVt
 
530IvmJHRMjEZwNVW+5ByYzLPTKzJDLFPMQ4xKRAd1P8/eH4bVv9q9cvGMQMkNAAq1D5wgssI6qIolo0L8qstYquECOISBynT58+/n//5t9++PTx19+8veyaerO/fP1t8JVzzsyyZCISyTnO89j3p+NxOM2nByb7YdB/8/EYqtrU/vD+8w+Pj7jZNCFQ8JuXL9/suv/ml6/f1F5SFFEp87PnvO7ssZ6F1zOQRM8IdIsRPWHvBbSk1XHqc2dXhnIXaPOnVCZ4eob15VZ5nMX6n9niUm+cS66fBv6C3jsCLLl9XfuuK+0ev9+0TdM8noZxGAwElFUkqjim4KpN2zZ1gwgx53kaJaUUo2pi1F1XNZWTnOc5ncZY3piqxikmSiXfR3a2Fl5N8KYwx5iLwiIAOmbHSOSd984F7755cSkKv3v3IaesKlGaUNUxZwDYb3fsmENQYjH17HeXN95XROwcEzsih+eW7/r5yxxp+aYhlk0CpYBlotr7XVPFlGeRbeWvKhdTfJimi6aufEkVClP+qVwoUr9cemNyFrOyJTE1SPP48e//X7d/92/VwH/zutle7l++9t4jURl7LLO1atb3p9PDl9PxkCRfv/rmwxDf3304jPnd5499TC+ur/7Ft9/sN81fv9i/6OoXTbP1bCoxRhF53tdZzcbwJzd+ocqXHy5nSHUZdysx2sDOwNCyz1rPiaeZrH3IpTyHM5z6HMuEp9rombU+Xf9ztPmJZf8zVwoATiQnySBgYESsBsd+fDz0Vxe77Xaz23aS0zBM0zzN0zTFpKpJtKlHQ1DReR4rR7vWU+sB2pRlnOLjcZxjVkAFJUTnnBGqaYxxRGyauqoCIqpaElsELYiyqWNum7oIh1TEjsv7mUqqAGYxZdPps936ENq27XP2RNL3OUvgV5tu50MFxETsXXDkaBlQwMUsVw+6gEErOL36FaOl9c8VEHEOTJvKl4iDVPaewRnVFhE7a/QjYvmkZjFGU5Wph
 
+lR5lHjIMPjXj/u6/z6z//zb37zL0PbMTsEMtOcc3knagqI7XbXdJuLsf90OPy3v/3+//39+3q333399n9/uctgPvhf77tvL3YOLcdoBiJalpg991tncOccggFWJQZTPa9dsfWzI61UtMKvo3WebEWOFttRe25ATz96+tLnNvccpTprkDxXznkOfP4JDQ8XSVCX8qKxkFIepgkASgU/9P23377pmqv9xe5yv308HL58kfEY72NOd0cz846DZ+/Z2uqi6rZdE0J4PI2H4TaLFIUwAiBmdmwAqiYqZWJE1Zo6AELOOaU0pVQkx5tQX2833jskSillk02oTsN0HMZ+HMcs+67dbToX2NfVwzTaPF1d3wR2TG7OklL0VeXY+TX4nj/tchWe2eh6J88/X442AhoCOfTK3rkCo5R9dilLVq29R1wWlqrJOW1YdH2ZQwiZSMbD9Om3px9/9/7LXR/zv/njY/fmN/+rv/5ft123CAIAGigVGFi15ImE+DjFv789pZR7F/76z3/19dU+OPdmU99sujYEzy7OUxIlHyQmXbEtldXPrUofsPpme/bZy1b1J5+3atTDsytiyz7jc320xnAzwJ9UXWcwAM4z9ef04lkqCQBL5loSvAJ0rK+x/tbyeFsxWlM1RGeiTOSYpKzEEgFEXwUzBdE5xpRTzHmeJmJu60BE45ymOXrvura53G+JcUpJhxiSjtMEZUAewExs4cIiOzYzzJhyUtMpRgCrghvneZ7nLALMRJTATjFuEKtAiuCRN03Tj9M0z/00j0kc04urfVVV4N1ls/E+7Npt8CGKfL6/q6qmabeeHRKKqYoxMCIy0Pkq/gnA8bxNcjZeW7zpMhZgBqpo2ZjAg0s5JZGCyzt2pfnMzFYmxBEBkMi53Qv38/9y5lcP+fcc/P/mX3/9s5//AgBNFRxIzmpFLVBzFjMTk2FO/3D3aEg/TvGvr/f/y59/TQWmAphE5iwofUQKvvLBm6mrUEcxMw
 
NDwpVe/FMYp9xwNABewaDF2tYEAJ9V6XbGJ88t+OfX6yz6dfZ/9icQ0k/h0jPXCcpg8bNffMqPn52f9VeWH2HZ8uEdt7VPYqfTwGaGVFV12zZZdZrGmCXGRGg5ZUKovGubOmZzjKI2xtQ1gYiGcYoTxJRiytOc5pimKABAqsEbm9ZV1bW1qU0xBc8IeOwnUa2r0BJlNTXrnHeAKee6Cl9dXY7T/HDozbQO4fbYm0jtvahNKVUDfH/3eJqnfde9ur4JVT2mNEyjmb568bqqayT2zpV1dZIVmJAUFjbikxN9ss4ycrAe65VSbss1ZPToTDVlISRHJiIAEHMyfXq24reZCMBE1MjdfPvr/auv52EAg/F0ZOeWBjRYTinOkwHY0moWVf1q01SM/+U3r4go5bTyiC1QYdMyqsVpBEQXAjnPdQ1xKpsqFmVqhCXXXM+gLYNrslok6MpFUoCVybSCSvj0uz8x8sUB/7QGen7az50nXSdCi8iSrvSZf+Yd1uPzU1+7Pn+5I66E/zHKPM9JBAG9c+wYAULw3vuH4ynH6JhjKuFYg/cGIIRiMIxzP4ybtmKmrJYVH09zP8aYxMBKnatmKcasmiQTUhGzGeY4zjMRBl8jUZaY1Vow59gAKu+C9+OcssygOsWoYNttVznu+8EBTTDdno51VZ/6McDd5X6bU/qcZ5QkOb1587Ou3SCgmGpKhAjgGdBIi6h5cRN/0pb8yd9XCHAx3GJUSyWUAICZk2QoU+OmKUvKOaYcswDiRddsqkBoKpkBqiqkmFRyShEAytCgmJUiScHMhBBaz7vGm9nYH6umY3YiYqZEzAgqeTktiAYWx9Fs4KqqNjs5PKhKoamVxPOc0i1TFiWs/0n+95wyt4AbS2IA//zrmRn9NBNdje9pz9ZPSqP1kPynn/L5v89/ef4qLqacsxiAqjCRD2G/7TabRszu7h9TakwtiyCAqExTfDgOjOS9qypfV5UBJDWiZrvZpKxTfDR
 
AVSOipmlg3XNvavMcU4zBeefdlFKMkRCDrwxwmOMcUx1C19R1HXKW0zAOc3JMSKhIWa1mDoSFGHCcJu/4zeVVUzfvT4/34+Cb6mevvjLmKcXD2L+Ic/SO1ZUYXSSYy709ry1dGymFX4uwEnDWS1pu6PMEoCwsKQ4TdV1wSoimwoxmnFUt5ynGL6ee2P3m5XXwFYdwru6ziKjYIseiAkk1g2RclpOjipRIG8eTbzbsHIBJnJmdcz6ntBbLiIg5x3gY0bmq3Uz9oUDITzf7nGqDncP6E1b0nAXyVPuvlfXT7z5Z0p8Y0/l4P9n3swv4E2N99n179rpPYf1cUK1GD4tLB7eoQSJ67+u6Ct61XV1V1TzncZol5xB8FeoquHg4nYZJsjjHAJpFUspV8G1dEWJKaYoppdw1VYoxiTJRUwUgGscxQraUVCwDFpkxQHDeOe9hcfJIRGoQYxpjUpFN21ShBbBxijGnnEWdtCH4uvrx3YfrrmWik6S2aVTs/vHovPuLX/z6Zbc9jv0/ffcPX7/52f7iCpC888ysYJBVCQtCdMaqEZD/tMW8LHt8usSLk1lqj+W/ts5IFAo5oGOuAUBVVP7N3eGHMX11e/jXl1002FeVI9xXTGZieppmBCPNc85q0PJyYM7VNxJZzpojgnnndZ41ZyNi5zUnWyoMW1DXcc4p1t12Hk45zmcDWe7xWiTBuj4LdNlZ9RRe4dkne2ay+J+quP/ETS5G9vxsPy/V7Se9ejv/FgA8yTTj+QiVN4DP2vSufKtMZgbvEbE/DcfjKGpMOCC8vL7Ybbo5ZyTynsvT5Gzeg6jGlEx1inHTNuQcEW26RtQAUUQNQHImxMp7QkwxqSqTg7KHE7BspSGzxlPFfOz7snq3qiomFlm22agIM9VVcMEzQMscQuhTvOz2L/b7u/7YbS7fvv4659Q/3k45TYCB3t3df3n56u3F/jrGRJSpiEgWimpBU5jOF3ptsix1/p/6jKcjjcvC
 
6me3BwGQEM3YqPb+b+6O//Oh90T/+Hh4xfr9FBX5v388/pfb6v/w9gbRpjkxU60xiCA7pIAKBEiAyCQigIjOaRZEyoAUvOUMZiqZvJeUVESl7K5SAMhxHnKuuo2Z5TQv1c5P4/jySc8+71nyd/aKf4KcP/eUPwEvn2OZy3qPhS5z9n/nFupT8vDc0FcsFs7Txk+3oPxweRtODcCUVFRojlHVUs7MXFUB0AFAVmWmCh0SNnXtKM4x5ZwIzZTBOyIGoKyGWUSECTdd44NDs3GK4zSnqGZlVcgCthXV3PJeU85ZNXhfVX7KmR233hPgNM2gIqJTTF1dt22zbdu2CneHY+29ZiEEVL3aX/zFr//ix88f//7v/v2ubX/17c+96qfbL/3D/as3X19fv5qnYSZyzjdVretlLUwSXdZFPiVIhShz3jyGz6KkWfETVnrramWcwyGAmBVWChL8zcPx//JPP/51G+7NDlG/3rV/cbX9NMt71e/j9MMw/aL1O4ZCMDRENCWwlShgZlbu9NJKIFLJ7JyAGJS9P8Leq6lGUS1NAUNEVZmHU2g6U805PYvuTyX2k6vDn9aK/0nk/HmOuJjPfyIHff7M9uxXllPx01ThbNn2TGvkWSkKz3xBeaQ6RhOFnDVJpDkBoqFtgru62LVNHTyHEGLO85xyygjqHBfQNKs5gizq1LZVqOsq5ixJh3E2haapnHMGs5mVTiCYLSo/qp658N3LB2UiAFC1yrlN2wKCaFl1h0l0ivPN5cXLywsxm2OapjmpxpxCcC9vXjSb7T/8/rcPDw9MBETv775c7y9ev3rddFvR/Ic//Pbm5evrq1d1qHNOMUUicqX1icDEBaImwmXh5wqYn1O05YIut2BZn6cqktMiwAQIVNaRAiK83jT/x29fvQ58Efz7ab5pm5ppV6X/c3s5ioGJrt2dxVkgoxkSnVsva263JMdIBGbIbJKt1CIGRFSq/udmJDlP/bFqOjU9Q/e4OrY/M
 
axzWY3PCEf/3PLKd/SntOXnR/d8ifSnRmk/bWL95JntKcdYar4/qczMEMpaV3DnF1109wi9D0Qcgt/tt4FJVO4eDsdTn1M2FdWi5oPM1DbVHGWe4/3DQbRjQkfo2naeYozJnOaUwZQIELng82qaUo6iVfCOfYwp5VzsJYvsmrYK7jTNlXNNVT2cTuM0eefrphHVEHwWNQBP1Hbt22++3u92f/junwjx1cVV17ZieuoHR3R9efPhy/v+eHzx4tU4jff3n0+Hu+BDaNqqarNkMHPOMxNTEThjWIC6Mz0NaCmI1z2OCudpXVVBRCKGBa0D1AWp/qpr/3c/r2LOIvLtrs0iamaKBNCSLroyZb+UKi2eA1cMdgUOVo9ipoisJsxcFqmBQc7RsFRsT1VR+YuKTMOpbrppONlPgzucyyBYq/pnEdz+U2X4swACf2Jnz//yp988pxPPDH1F4J8euqYNcnamuLQMbM2jABDc+vaW9xB8aJqanTv1Y9vU3LUx6zTFOCciZOcsC6oF75goxtSfBhGt6goYL3abtq6c901dDcMwxwQI3jvvuESWmJJkFVEtRSuloj8OZoTIxMMcYxZX+kDEu64jJMd0s992XWuAn77cmhoEt7m8PPVj//iYRXzw1xcXTHh7f5hVfFXffvngiH/1q9+4qvnx3R//zbvvX7/86te//ksFNDXvfZYMgN65um7qwGAoubD40QyQjAgXPbbiHmRZAl0KbVVl9lg2qpSiCklsWUdmSMSsYAWHN8kgGQqOCbIM+C5ZAcIiH702s57d0eI/EUFFDQnLqkIEKEGc6LkHPduf5jyPg6uqOI5PdnNO+NZHPuXW///tcgm16/88fy148r7rz/75V7HdgsuuvBRcCqeVFbA8/RpU7CyKvLycqyqfs2jZjVTOlSoaSJbbu8eYEhEBYt02lXdt2xDRPI2HY386DZIFCduqqqvQeN9WdajCNM0q4p2TnHdd470Dg893j9OcVMqlpu
 
BdCL7yzsxSFlObcpbj0Xned93Fxa5tmxhzziCqlXfsuGnqw3E49H1m3G12P75//2q7/ebtm8/39xfdZrvpTv345uXLm5tX4zwhNGZ693D/3bu/ufv04e3bt7uLq7svn9i5bbcLdU3OO18hoimoWRkUJuaiRBy8N3zyNabPTz5kk1ITMJKBZRUEICRFxKJVbFr0xtY7sCwJBwAgWgzCAEyRGJjOFrkUYmaABEiw2C8qgErGspDKVERyTshsa+b3VHQDGEAxXx9CnOcla1yhh+dJ5BKF4ZmbLAH9mcnCszLo3Jz8yZIk/BPztBU7sNUfnst8xKcmp9kqg7OEnnOGQ7gUS6aA4Lz3gGh6pt8Alu2DoNM0pRQ3XXtztd9tuxBCU4WU8+3dwxzTiupp8ME5J2qH44l6RMKymogdq9g0pSmmw3EYp5glI1IdQlUHJEQEWYhAmFXnaa4tBBdP/TjOaY5RRMukxDzHUz9mkV99++0k+o/ffQcASNQPQ/But93WVY1I7WafVU3leHzo2s398XD7+cMvfvHLN1+9/fD+B0kpSmqr+vLi6ubm5eWLr3KmmCMiiuSStIhKW7dmy+7dP7l5VpryOT3P/XPORGRPHnC5E8GxY55jMY9VMw5gqYfKUB0TIi0M6oWvoaZGCFguEK76mrYM8Zb9vJJTGbnS8zv7aUSO8xTqmoj1zDwqkO0/QydW612LFvhJunnuaCxpYvGChGtg/6n80tmnmhmu45qr08ZlKRIuj1yxvifnamsf6+ltoWu7ulz1OeaSJprqtq1D8LcPh2makXC3bRihDc4AjqdhGoeS5xJzFcK2a4eYYsxNHerghnnuh2gAqtYP8xxTznkYx5SzAniCUnk6IAbKkMt+PAZMoimlw0mGYfSO67q+vLzo6qqua+e9iDrvFPHh/g7MJMs4Tv0wusrv2o4QQ1XFnIbTQXPabvauasLh4X/x1/+ZIf0//6f/cRrHum1eXl7P0/zv/+5vfv6
 
LX445vXj5FgFOhwcFaJsu5bhpd6aljWmIBPh86LtsQxEwOCvbqMhiAbgkfLisMUFCzIpMWSEX+KZw+emcz3FRElyW/5bKHckB6vMArypLhgqmAMV9iirquvZgNZaz5yv/TvPsQtCoiya3mf6pr9OnxPeMjuvq+nBFJp8kZg2QymPO5rt0n3A1cQOAZ0UPnh21mpbjtiAUxZSfoCU9E/cKVLtEfbdtAiGa6mmIc4wiQgRq1rX1OM0jWOUYNR9PhxxHx6wpgWkd2Ll6jknEbh8OKQsRT3MkRFObYxYRAyiiWVNMKWezMpkEWS0vxFoBM0dUh2rKcY6gak1bFWYTMgfvnPPOcUppu9lcXVz88cN7NGDmvh9yzlHFJPXjeH152bXd8Xg4PD68ffMN180PP3y32+67uv3db//+ctMN3h2n+ePtF0d0eXGlCGL46dO7dDoS49ff/ll/ug9VVzTzUYt5aBlqOk9xmC5pJYADMFERlRKZVcW7gIi67ODFcqOXmT01tFX0dTW+NYiDwbLaGaDQn/mc262RDgFW9TmRnJJIXlb5LNT9n3j6c7sop0RMGvMadRcLXbHes/tciO5qRgC2KC0v7Bo4O0GDwhzFp3pr9ZAGy/rDAmuu45rL1g9bX6BYvhoiLU9sBgiGeB5GWf1qWbMEjtillMtnzCLjlBCyqJU6pq5CcCiSEbya5iRMtN20O9B+nB8lDykP46yiVRViygAQvKvqKqUEgDGbyawqRUFHwdCU1yn4kp+54EUFVStedm9Xwfvg99tt3TaO0Mz2uwvv/e3d7b5tQXTO6dgP/TgR4nbTVt61TTPM84/v37VNQ879+Mffd93m1YtXd7cf97vdfnfhvD+ejuPQf/funQb/6tXb4+HxH//hb9M8/+qXv9psvzDi5usLW+jwGgBKwnQe1zSzLLlI8SAWxExKTV6mPNTUMZuirtt3yx94qpiXe1lo+biMJwJqWT9ugIrIT9j1spUFz65pdWUl
 
2cgiWsYTnu12sXKiYDFBU1Xisk3oyX8aPmWOCzVkhYMWuYViOSXaLvSi8jA8H4enHGEtXlbDXtBiWIujMztpSTRxbW0iAFKhv5XsG5ac1QxBTMGgsMUwpTzFPIwppaRmpdSum6YJbs7qxFqgqqpTzqhKYCnb4TQ9nsac1TEpEhFLlj6mXIfgPRIP45xSyqkUFQtrwS/zzMhEazqiKaYk2QCaurrc7oCgaWoAPB5PhHh9eZEl398PouqcyyLBe+94itEHf+yH3/34fkr54vLCVC8urv7p9/8Yc7q8vLn7/FFNAen7H38AhJuLSzP75S9+WW13t18+f/jxu6ZpLi4uI8C7d38M7FzVtE2LzE23sWZjZt45Ji7WqaYxpUIzWLM+IEIClGWUv2x4fAq7Kc2LldiiGgyICFRi8AK7qqy3r9w/QeSnnK/cZVNb3wPiUy/2yb5K/H1WERdvVbykFZBVZdGkJVp7Rc9tbX0xfIrQa2pamKZPFVUhNNia/xTLfNYNwqdGkT0p6BWPWV5DdS2zSule0tmnrHRx6mbm5pjAICbJWbxnx6hmIjpPc+UdVt4MuLCO2c1JYlJTGcY55cyIGUBFDDCmOIxCCETglqkIK8a3MM8BHbF3jpmYmZ3LWaA0UQC9c9McY8oxRwyBs+Q0A8DlxRYMPn6+jTGG4AGw8h4BArHv6ix5irHThrxDw8vrm4+fP8U4v337zd/+/d+Nx9Nm2xnCOIw+BMt5f3n1+uVX96fTH7/7XV1XQz98+fLl17/5y5TTOM23/+7/4xG+evP2xatvDv5xv79SCYSYVyGgkuQtbgnRyrYcRFEEQJHs2CEgM+esxWmBKgEoMZqpChEXB1xIXmaiOWnO5D0RQ7loy7xlua1lcGjZdyo55ZSW8FeOBDwVFksNshbnZ1DIRBbB/GJuqrAKKp01vNbzsox+PquknhCf5VydE8dzYbg693ORtuTThmWOdAkBq+9dnhPxfC7O/twQwBTPT
 
Xkwxz7klMuZ8Y6JfEoiElU1paRgnjllnWOifhBTUTVVJuyampGkH89oHKEhUk55xsjOMaIZJpEygwtgIpJyxgLBSFYzx+ydA8CSpKac5yxM0k9T63zd1I/9+HgcmjrEnKecdm0nWaY4dV3TVvVp6KcYk1ntQ1XVHz59+u4P371+8+bd+x8Dgdbhy5fb4zDGlK4uLm5uXoSmiXP89PHd5Wbb1HWeY319w4C//aff37x49bd/8+9f3Vy7UP3dP/zdX/z6L+ebPlRN1bSIxMwhVLR0vJQdn+//Ot5UdAMyswOwLJJyWu9kyUORic20JJqw4FDFnSiqAvPKGIH1flrxj5qlCFLM0xjjbGoGhkaL5xFd8wAzKN3bpRhbK2wrKxFWwGyt/JDOQfrML1JYhOXxTBxerPVcSz0VW2cY9AwB4NnMivktaTTg+owAZ3r0E3awAvzFrksaUJ4QXdt1x+OxFGwpSXmrTCiCc8zTOHnuxjmmlLabpgqOmHxw6r2oVlVV1ZXkHLOM05xSVjUkMjBRyTmrCiGWJxVVAJQ455x8Dt45dIwOF5U8R66umIgJGawJoWKXY+rnSbKodE3dAKOqzpr7GBsfvHdJNac8TdPd4/HDw+nv/ubfv7i5dsGneQ7OHY+37z5+BsQ6eCYapylnvX+4y9MUmsbMfvbNt7vdxfc/fG+it18+OUQR+b//9//dz968vf386eOHHy8vrtpu02z3l9evgg/2VJlClAwAniBpzpKYHBhkSSK5jFUgErrFJhQFiZdweXYPhEhc8FPNCZDYLbtBwNCQSxFpalaYpGnOklU0a8Yy0KxqJuUtrcjmGoqX/yx3XmHtkRWzL4iCySo3QmVH0rMVXUuye0aFDADLiponn7omjKV0On89++vK+i5+8qy2eH6Y6TM4dUEfdHXYAADgXl5fmsg4TM4bO5UsKWY1IGZE6vtJRDdtzVVIKRECCQpReWNE2LWBsD710xxz8OgcI2LhmKYsVo
 
I7MSFhSkW3PIuKzoBQOzZRNW2qGj1TFlhTEwLo5ylnGebIiI/9OKVc12Gapl23ud7vg3Mh+K5rs5lmOfXDu8+fVPLP3ryZ+z7PM+93v/j5z/e73e3D48PD4fv37yNY03af3v+432xjjI7dj+/fnaZ5mqdfffv1x0+fLvbb4+Hw4mJfef/+4wfHdDw8MuLNzQvLOV1eV1VjAN4FE02aHbEQZ82mqiClrBbNZ0wRlq6IIdHCMTc833qThVpK7CRHS8kQFRwVfsBaPpeSSCTHeVqTJVBTNCqJqYE9MZUBDHTF/FeqK6LpQrrGRfprjcugVlQQbdnDsVq4rdH8yaDU7Mw8xuVUrMZoAAAKdtYggLM12+pX7VlDy85w/pKYPund2E8M3PXDmLJ47wAw5xycY6JpmhHNOQKAnHWaEzOfevXBVz6ktLAumqZqKp/FQuVfXu+KUZ7GeZzigkQQEaGI0uK6nxcQsQ5BTeMsaujUERKATTE2REwcswxTFMlKdNbDceyOpz6myETe+Vc319f7C+f83f3dzX7XEL37/Onjx89dXX9NvO82X79544Nnoq+Cv/7q9b/727853h/2m+7icq+q+/32TVV9/DiMw+C9+/Nf/uJ3f/je1Mbh+Ob1W+/dH77/Pkve7XaHu89//MM/fvXV21DVdbclYnauabeDSJJYh2ZJrtZUzJ6xKwzQ+VBcqaiZChgsfA4AAEUm0lUxgKQUX7AgB6o5l7nNlauiALrkkiq2SM2fsaaFS28ABEuHfXGLRYV2ibrP5RdtdbdwLnpsIcoAgKEaPBU9qGC0ppJrNQ7FjBfuz3OEoER5BSRAfXLpq9z4OUeys5ozrP6/fAw3p5QlL5mAihKGyiNBirnsPDJQIvRZ6qbyvmLnppjnrJ4UoSrLgOq6Ct6PU/z45Z6Jm7qOqdRGwMw5C1iZ6CU1LZ5D1KYYg/dokHJCRF9z27ZVFdqqhiW82ThKzoominjqh1I4b7t2s+kIoAr
 
+5YuXMaVtW2fVx+NxmqY0zxcXF/v9TsGY+XK/u7m6urq8fv/p83g4jeOYyvQSIjPfPd4fjkdT/dW33xCiiDw8Hl6/vLm82H+5vWWmHz/effN2bJoBTaahlxQPD18Acbe9lJzqpkOirIKIiIxUGCRWEr6zUKgVEQQELHPlCFDUhnSBFYtmTvFJarks1pWcJGfNKeU0p0UxGBFVwExtAbkWrpGB4TKVtqCturi/kmguosVrP9UWSsC5vwolSVzWKZg+ddLOmWxxo2gA9KxFCSuqD2e/f3aF51T1qWlUMktcIfw1xqyyPKtnXio+QNc2NQMM3vXjpKpgSgjOOREtA8kIBGbB0aapxznOMYJBTjmBNXVu6ooQx5jnmEUtpkxmITCgiZbN2yriRAUkkyoYnrnXMSU1YyQQUJGYU1a5dpel7eoc++D6EdQ0CUA0MCOm4EIUeXg4pG13HMemP+23G2badJv9fv/u/TsQ9d41VfDMMUUD3HQbQ3q4v/3zX/383afPn7/cEyI693A4uo+fReTmcj/N0+Px0NYhuMu6rgqmO07zpm23bX08Pswxtu0WEKrgRfI8nZCpblrvAwCknAByQXKLTFcp1WHp1WBeEH7IOcOKqpSVZ7jeYBWFs+tVlRjnNOcUc86Sc85pwXdK+DRd88mSZS4pxNpKOtfpdvZYxZ2XDNcWMPQpzyy1O61Li5dAfi5h1r75Cvg/83bnBy4fakl8n2eoZ7D2J+XQ+hJrqHkq7lf/C65t6qaqnHdlGKJoVDChGaQskkU0xRQBAMmFyoNqzFlzruoqqw1z9s4R4ek0MHNThxRT2SxjANbYFLzcH2QWWMDAp/kVMyNE9AgAIoKqWVQVLrab7abz7Jhy5TgwE7NjIoBd1znnHk9HMUCDz59vD8fDVzcv6rqAtm6/2e67TkRPp36co3fsvdteXH1490PbNiGEKc4Xm+7hcDwceyQCkctNV4fq/vEQvM+iZvrh05eu3f7+D98/
 
PD4iwHd//GHT1k3TgGmOU1XtiB0Ano6HZnvhfAVYHKLmZM75pde5msqSc6qmnBaitCgYIDGVsXNVMy3cZFAoSnwqZTvIlGJUEQNVlbLg+sl4ylc5AWujG88LiwtOuVZPz1ua6xDdancGRsumw2clzLNhkTPiDmiwHBJYnxEBlzO5ErWW/AFxwUefg/p4zjaXRPWMiRWaCK4VfxnIdwgYKj/GOQRP2MwTD+M8z7OqFsQPzAiJmFJKpVt1GmdTBaS6aVmAHAFQzNliQiLvHSMGRwaYxLIXcmyTCZxR3+X9qoElZRVmt2areZhmDJ68I+eAqKqqrqouLnZJpAm+Cv7Uj4YbSXI8nk6E33792rHLOX/6/JmdQ4DPd/fjODKzAjim3WbXHw/7rmubGsF2m/bvf/u7vp9ELTgHYA+Hx3mevPfH03BztVcVIgJNc5xVJSV9eDyo6X5/pap395+nmK8uL8dpHMbeOc7TWLcbKrJTgCKZ2BXRKGIHBqpZl9TTJGV2zN5pXsY1i12W6geITKRMHeWcUoqSs4pITstocOGWPsGEz4J8ufOEQOuylzNgeW7hrKZ3JhQtRlh8KoIZnFuQ5ycv40IE+ATWL65vVRhbSiQ711SI+IT72/qEBbh66tsvD17fJpgV7VIDWPcuA7i7h8cXl7vah8izCSPzdtMh4jQnYfHgiLmqAiL1w9SDOWYfvCrPcybTTVsz0ZBSXdcxikj2zJuuEZFhnKY5TXNyzjFRybtyVitI4HI+IYuAgXMumxkii8qcBjftd7vdtkveXe33b1++OI6Dc3y13zl2D4fT6dRHScfTMCb5cHurWU7zlHPe1LUB5pya4Ku6mlM69KcUZxWbU2yrepymLNpt2kbyxXYzTdP9wwEM1OzXv/r5m5fXovrjhw/9ODimnOTL3UPK8g3xZnfx+eH++x/et93xuh+OD/fj0P8qi4lImhGZiFyoyHtyys6LZsrJl12jOSOAqgCgqjIW78kGq
 
qLE3gBVcrFByTmLzNMoOYmKgiosY/gLYgMLfWNJDkzXOgNFtRTrstAAFoB2NaMFzCle8Mx2IwDQ83DSmm/YatxmaKBriVtwAFh75etbOhf7TzATLm7IbBlBO9t9yS8AziO25av0QRZ/utRPrj/1cZqK0qepwhzZcagqdkNNVU650CXnecpZidk7V6ux9yr57uHYT9FUg3dVFarAwyRZVdSISAEAiZkZ0TmHiIVejkWNSu3MNCvnuPTysmQ1lSyaUl2F0DZVFbKKY3bEaMjE2+2mbRvN8vv5h9M4xml+PB2naUazT6qO+XK/e3l9dbXfV1X17tOnH959GMZxGqcpxs1mc3Ox7do6xnT38LjtWlV7PPX/8i/+7Nc//yZJ/nJ39/s/vMtqwXERsDud+v/4u9+/fvPNTHA3zH/8dPtmnOd++N0//f7h0P+Lf/GXu92pcd774EPl62azu1yKJMkSah+qMqFR3F4pPBGBijwTqJosBZNIQftTimqaJUtKpcu5AqIFk8en0LuEzadypfjFUjTj+ohFDRPXqLo6UzrDkKuV6FK2r89cCCCLn1vLdizmpE91efG0uKpEPOWWa1qwUpFLurxWTctvnmcVzxZ+fofucOwRkZ3bbjehrjeAMaWYkndeJINBzjmmVAZ3QEUEY85d8ORDyhJPvWNOIkDUNaEKDgBENKoycxVIRZBwKTOXiqFcbQAQQkQiJSRgIlRRRqir0FbVNM0GVoUw0BgcAeAUo6l556qqIsLD6ThM09QP4zAeTv0cIwIQU11Vl7utqX748tkUvOP9pr29uz+eeud407XHcVK1u8cjItZVYObf/Opn37x9lVX7/jSOU9s20zSpalWHn3/z1ePhlFL+7rt/+vWv/+z1zXXvXR5Or66vQWZCPTw+quTBeQS4vLpxOTG7qttKnGGdDXI+lFOoJmBYpmZIlZgRwETLP5JzyjHnJJI155K72iKV94SFLzQ5WPpOVhL6c1xagRxcCp
 
W1Vl6yghUtX/PjJ/LA8s3FQa6Gu/yIFnMtAfgpjUQAKmqMT4CnmgEtT7u8UTsH8lIuPWvCrVIrT19rgQ8A4C4udmYmIsd+qELYdM2ph6oK3rmc8zQnG0a30BwppVy0FOdpZudCVQXvCE2TpJTDflNVVYzJzBoXqiocjv04jEzkvXPOaZaY5QlaKDnVgtkSoTMEQyTmdrfpp/n21Hsam354PBx98HVdBWIi6odhjvHj7e2HT1/iNCPAZtN12K2QDc4x/fHDx92m27TtOM9meLHfFRIwGXji+2M/TXPbNsMw5ZxSSh8+fd51fcy5CuHNq+vjqf98+2gizru//LOfuVCJ5q3XVz//um1+8/B4C0D7XdvUVdd1VdUBkqo2XRdCVS6tr2qRhEhZMwiBmWp+DkOrgmVcrAELyJdzjDFFyVlywem0cMll1YkodcxSzdjzruMTxoxr4vjMFa1hdGXCwTlJffKAK3wL51D/pDuiazuyhLtzeSSqRnp2eM/B1vIiq09VtIXpjE/nxOA55o9wttq1HWauqsIcU1bLcwQDFQak66urOSbJqZqjqmAi7xiJYZxySmXpAswREL1z45xEJGdhpqqqADDnxIRzyqdhGueUk4TgHbsZ4notjBANsaDRSzWmQkQG1o/jdd7dXOxzzsfHw+HY18G/uNzXIUwx5SzjPKmB937bNBLCzdXFVy9fxpSmeQ5VuH849McTAoro4XgChMv97mLXfazC7eHYz1OcYxX8zdVFP8XPd/c5JQEL3n/4+GXTdduuIYK2DteXm4vt5jRM96fx5rq52F82bRecC1Xz6tXbaRpD1RFR1zXeVz7UWYS8D3UDCCKJfe1DU6aZJMUzplNOJROtJfJiZCnFeZ5yTinOWfLC7Suw8XqMAQHLHCkUKchFXn7BiZ5F1hX3gZWuX6x3VWWCBQJavO0y6AwGIEs9DmcjO2eZZ5s7HzMzW6ux5bsrkADnR5UibMlxVdfE5KliKz+n5+g
 
VLpwqBXBfvtwX6K4KgRDLCJvkNKecY0pZnQ/OOWYGM8mLuLo6ZmIQ7U89EGYRJsxZ5zQwYfC+9IHGOYpoFoljTHOUp+0CS9auxXmUTTMZkAwAR+2/Tz++fHndOj8hSZ7NLGdFxNMwHIdBTV9eXKRpnqa5qcOc8vtPnzdt5Z0jtcttGxinOToCIqqrSrMchzGrff3VKwNQyXUIj4c+xlxX4WGacpYvtw93D4df/2JTRMlF01cvLt+++urz7e39f/zu8XBwRDlLyrcvbubLy6uUzYUgpmIIgM75qm7jPKZ5qrqtgcV5cL5iZjPIKSKUFbumqpqTEbNzCGgGOc4xznGeYpxFpFTutvjNglCVuLoMnVpxoIqIQLROL2HZ/XkGbQyfxM/PsXaxicV+Vj+p68rG59+FMxp1xrJWu7GnX129/9k/r8H8jGqd04EltVv94zn9XTz36pLPlo2lSLp/OLRNBUhZlByLmpo6orZpBrOqot2uVbWc0jRH0QBgCuYBJEvOqeQ+KiohnPpxTtkxbdraOY4xoYGYzTHGORaWl5oRoq3Y7FNubgaqiECqHjGLHA595R2IJJE5JT+ObgieMHjHzJu2Gab58mL/9tWN815UxxjfffycYu7aZk4JweZ5ZuK80cv9znl3Xe03m1ZE+3749OXu4dg7x8H7m+vLeYrvjp/3280U09bo4Xh88+r6+upaALJq3VSmmtIc4yhG//j77/D7P75586aqq+DcjDEAzIC82YWmi8OJ5yk0XZY5zgORK+PzKmIay9U3tSxJRdh5IATElOI4DnGeYs7FenC5m1qwQTUjpNV/FUcMJfIyGhHpMhp65rydgaTVONdBElsodcsD1yQBV+7egkQ+C/5P7lCfynA4t9SfQU0FSyhHyM5euCQNYmAL4HD+3urjn3lcRCwCz+XzuJzzMFNTV4QUY1K1ENz+4qJtG2Ym1N1mk7I8HI7kfFXXh8MRwBLxbHNK2cxMFh6dqG27pm6q
 
lPIwziK5TNHTAh0rITgmM1DVYqnlzZZ1RmoGZRmI6q7pri8vMthpmmIWFT0+HEikaZqL7Wbb1Z65q6td11R1NU2zmKWY2rpJHO8eHvt+KNhKVVf7lKtQpZSHND8cjllknOZQ+b/+q18Tu3fv3t3dH+aUuqaOKZ/6sR+GaU43lxfHfvhyf59S8j7c3h8u99s5SYrx4XD6/t2H+8fji5c3F5vN9eVlcEFyStPgQx1cmKcBCR25lEQtRxNids6X1vpCvlvmmRSZUoyScwkvjssoMzAZAIGKSjYreBMCMpArK1TtfEtLHFomTc7R3tbYuth7yQfWNvqS9i1i5uXYlEJ29R3FVlbyGwKYLK5x0T5eQACzsoDG1mhNhnbuRuFakRlgoRCUiqPwVdYhu5KcnNNoOD8MwJlZnEYH5p0rWgSqELxXEQCLMQ/j1DT1brOZY5rnOE2zmbJXAxQdC26SJZ81VVSUEERV1VKSmFIxU1szKaRS1Zdc6Xy9lgyKCrFScn/q1UxyNsmaZeyzY2q69hTj4dOn2/uqCt4xA+ChH+7uHx4eDzkmBGDvysXt2padG6f5+z/+yLxsjClMqz//5c9evbh+9+HjtutE9OXNRds0x37YbjY5p4sdiOT3Hz7fH45NXTFxCH6Omcl9fHy4eziM0/xPv/99jLHfbhxgW7fBeVVNcSq8u3kYoKpNNUsyU5mn4AM7j4CGRkhnEDFN4zT2c5wJlIJDMC4SlQAm2cSySrQsksyQ2NkSuBdsbknxCtKJiMXLrpno+bqW0snW4I2rB3sGkp9L7OdpACwgFyCu436rokLJ0Jb/eSZsuy5OXvnNuAjrruG7hHRd84zFwJfS6uyKz87LYUGFUqpyruttacE/HE+OKcZ0PJ2mOXYxHvspptzWoW3rUHlHNIzzPcI0zRqFkGLK0zhpzv2i407OOchyrtPVQAxMDVTWDKN8FDhf2uINRDVOcYDBED1yW9UnHUz0dOoR4fLiotk0f
 
YxzSpumxhHuHx4fjsftpiuicG3bjvNUlj/d3d3NKRFi0zRmqmKIuOmaH9+9/3J/3zVN1zZNU7+8vnCOQ1Vd7PZm+k/ffTdHff/5lgjfvLz2jkNgJP/4eArOgxoZSMy3n28t57ap9/ttXQWwMig0W8k0cyRya3RGydHMnHOEfHZRojnGKaVZJRWGPhESIROqKJhoTpKipBlVaQGmzFZl01L02KIYa7zQ5sH0+TDqkvHbOadcSylEOI/4LsTNNXdcy6IVxcSlsb7a8FLvrdXQalII5yUjT8nkGX1aC6sSNLW8h7WHUI4BPU9YAQDRVVUoW89MlUodENPj4fjier9p64fjaZrjbtshoedl5crFdlN5R3g8nbyKmBo7z46z5Kyy6dqmrQlJ1UQtx5whQ1EgkDPndb1F5Qroyj1bpNUWzAERxKSufExuzDPEeDyail7InoJ37ACwH+fb+/vdZvOLb79x3h37/vHhMAzTaRglppwTMHn2cV42iLJ3SPTjx89fv35FiA+P8a//6s8v99txnrfdtm0aM3375qthmP/ww485yeHYbzdtXfm23d09HKYYv3r1IqbkGLfbdretm9qlFEXEOVs6OqXmMwU2QCgk7JJpmZloJnJLLqdqKqYCmkspC8CgIKo5JU3TPPXTNKlmACAkYkNEIzV0WhpAuojIF20INSurpwDPFQwUJfZSbi9bFQCWSgB04evgYnDnGuicGCxhzbQoQeMZJTzDorbknraIvwMtNXjJMBcm6Yqwltuu5ZlLfxSXE2Nr6xPOR8AhQJG9iCk9PByy6ByjY3e931Dt6+CHcZpj3jTN3f3jaRhNtR/GTdfKwrsBZhLRnLKIFNLUpmvbtp3mKKLa1OWNapaMshSaz5gLiFhS0sL/MUSYiySONW0NhQyKVD5MznI89dM0b7q2auq7xwfLUp7l3fuPx74fpinO8zRFyQkVyBECDFNvIuxcCKG28Jjz61cvguMvdw83lxfbrjv2PR
 
iEEMTADC4url9c0bsPH/7w/buPn28/fbl7/dVN225fXl89+Idv3ry5utyd+tN+t7u62O/3F03TMTM8u7trI7d4NTAs1Fheot7iXiTlmNI8T4PmCCCBUAkFUFVTitM8zTGKKpqAWRlkgqzeBSVRK7RxBMDiYpTIMS1usHBSy0/hp2o2WCLVApESLCZki7jf01dxgGfwH5ah5CUZhRV4R4RC7afVny5eeWXzrYo9oAhPNCszxDO7dC29znDX0ogwV1c+JhymGLOcTj0RBe+cd5/vDs6dALAKYbE9xMq7LGoG/TAhQlNXkiXGJBJTSipCRNM0/uEPP4QqOO+rKtQhVI4fAFJKwXyClMSYyQdvBiK5iLMvufQyLqiSNKt657pNpyLOcVkYXCj6GezUD8McvePgXRXCMExfhrv+1BfB0VIpm5klAwAi8t674Nn7Kcab66vLy4vH43HbNt5zP/QAVldVERA9nfrNZkfO/ebPfqkqp+Px05f7FGOM88vr/X7bbLfbFzfXx9Oprpu6akJVBx8KVAfPv5aKBRdqE5GBETECIaKq5JzSNE7DaRgOKBlNlAwMRHLKaY5pSsuwHq2VSMlCk0cgBWQDVDVEcs45ZkQUNUYzKFL1CGcwfJlORrVi17hCAmcbKpXKgrgv9m2ABFqmSZ+sfCnRC7BQyCZlBmABws7wPuAa4RGL7hWU8aiSDyMY8FJAL2+3GPg5IzAAZ0jEzjlNKY0pEbNqBYBjnszMOb/fdo758XAcx8kH75xjxL4fYozOORd8VnXqYozFf8SYRWWc5q5r99sNIk0pOuamaUacsxqD1HW13+1EpO/7mBIIruSpBYBDNTM5HY5FWGae5mUAHEALImWJRXLE6H2Y0xzjNE3lUBZ421YADgm9dyEE7zlLQqS2ae4eHtGgl3Ga59cvrq+vLh+Px4uL6+1mezjczfOYstvvL3/182/jNLbN+8dTXyCI3c2NITd123Z7ACPi0ujLOS83dVn
 
+fTbLsscBl5mPp7TNUpofD7e3t58kjpAjqjgw1JzFprJ52kAAkZgJiR2wA3Jski0hKnPhvSPzqrhZcgRaQCiiMv1WOA+LEdDqHBcLWRuU5dqKLFjAcsitNIBWsGhFjojwJ2b0VKcvhlf+FITnjCzo2u4ssZtwmUQ/Aw8r/Ln2HswAwJUqpq4bQxz7QWOa5rnsCTbCbdfmXMUYqyqI6BzjNEUmSCnnnLNoXdelSxRzjlmKClfpMLHjKaby5bgMLmdiUtOU8zhOTVtvNpspzillSWmeY2k5AJGYMVoWmGNk50SfWhBqCgKFCI2ISXJCLnvEbf0qRo4AzAxExFRXfo5pnueqqt5/+Nh1m66p1ezt6xfMZAbOeSJMKW67/eF0PPWfr69e7PeXqe1Cu/ub//C3265pmrqqKnIVs/fOWyljVwlZK3xXeMJ3ibjIJgMRLNW3AnAJ+ExODWOKp4fHNE8oCSRbFgETRSAUIGXnmBw7YGVnzgGgslNmR2zeO2ZHVNZSo5qgQtn6DQaiBgDFDkqeVGyjEJ0WV1lo/kvpsoA+a7fp3M2Bc0JWCBVl+zzC8wnntY+12nGxxMX4DIpYry47P+BcTj0dl3VZyvmZiz92m+1mGMbgXV373abtx2nsRzNj79i5rmsN8dOX+xBcCKHt2hxjylKchKj1w1BOmveubZuUUk4JkIo+o5l1bTPOpKJoggjBOUJUUSYMzicUyskxo0HOIks9alBwXVRMqUiAr5XHCqcgEhMTmYGUr6KRuyLNpcvimJ3juqpSSnNKRpSLDDT7fhic4/1u808/fLi+GF6/vL5/uD/54367HafheDzst1vv64fD8XJ/9c3bt1Vdh1BhMS0kMyNiRDaRdTYI1y8oeQUgItHTfYClE5NklhTH8SQiTdXmNinQPPQx55yWvrshKRqiOmbvzcgoWxUMiUmNSJ0zREMEpmWrYVnnp1IolUtqsTCTDEUXUJwJrbQ0AQqdTBdjWqr2pUBZ
 
YKIzBL/8t0D/+GRb68+xwE1rG+n8W2t/vpwJwnPjdkVs16przd/h7IZNzeWcg3dNXTvPAKTwOI0TiAXvEanw5It8vZltKs9NdewHxOrUj9M05Tkuu7+c224753x/PB1Px5QTR8eurFxlJhYil5JlSWZECITTVFSbivSIOeaVPLMc3DKbz6p1FRAwznNSQUDHjr3zzi3D+yKmiiXpXvsiZZ0XM4vY8dQjknO8CF0RH09HU+u23cfPXx6Pp6EfwaypQxZ5+/p1XTUA+PhwD8j9NKvq26/eYMkg2RGxAZZhYCyrjvGcQS0V3QKcreopiIiFSwyQ8jScDsfj4zCcSvkfQiVSpG/IKKIsGm4lAOecUxbDDMijS84xO0fEwYeUXF1VWgVRVRe8d6svt3NvxgAJQeFp9ZGuE54GZdoTABbyUSlnVxTgGTj67IytBrloTZbwX6buyaiwLM4oTXmiUi+qAZ/j+YKDL667nOpl09cZDTVTMDcM4+V+d3mxH6bp0I8AEOp6HkYRIbY8ZzFlwipUwPzw8Ng2NSzPguycD5aHcZqmk0o1VdeXl+2my6ZxmmKKNFMIgYl16d4zB984NjNQjbnMziuY5YV3boBIRCKLoiQgECIQIyAHj+rK+u4SrpjZQJkpxlTaWk/HVoXJkXOBnUimBc5TNJCUsgp7j4D39w+FVgIAbVNnydOU/uLPfl5X9T/8/vsXVxddt5Wc5mm4uHyhgGZISLZQLSyLQEkkzplTwcdwEbl7MtBS7ZqJ5HEaHw8P0zRIWnOglGLMomjkAIyxiJRp0dMp4AgSZNGYiDiFEJiJjRVMDQiZCEWtnINyBdbeh5mZ5nOfU3Hl4S4AT0HG1ppmgTmXuaU1Pq9/oXNnaHGm628uHxlMQdath7ikp0tqscKquHbrF+9Lq/Nex51/0iZ1bV23TV2Gg2vvQURCdoRV8N4HVRnH6XTqcxqqugohlAaQijBzW9fZ+5Qz5wyIaY6fPn6qqsoHj
 
8SQc8556HvnPRGBllm2SsxATSTHlJJkWxp5Aqti2RIW194SMzsiAUMjzwucR0TddrPpmqEfHh+PAKl8BFyPLQAyc9e1Taicd4QQY4opDf2QUyZEx06ylCGklNIwTqqKCN/98V0InhC+3B1ykr/6ixdd10hOMcW2u4BlldGCv5TUU02Zym5EMCvq+7S60dU4kYrcvHceF5AX1ExMk+gU8xSzKx0OAgUC5lLiOEQHAMSGTMSAWOAR74N3ntGZgUpWAiQnsDQwF3LQk5kiFEp4wSuhvJt1+LiEeIIiTrhy6Qvw9CdPhavBLvG4YOjwfBhkSQ7OOaYVrAuBVO1MeVk9CRhaliUxXds1CwiFAO50Og3jVFWhpGuA4IMn5pxzSqMPjp1j5yRLjFFVYyQEqOtAaCKSVcvAmkiWLPM8j+M0znPZRpTmmHN2zjFSUSZiJkRi76qqUgBOCcg0ZStjuGC2rLJ6ymxKsKtCUK8i6gCRuW6qtmmc91VTXyD1Y5jXKr74g65rry8v2bGqbruOGdVgHGfv3IFOOUuZKwcDEzsdTz74/W47x/jp9g4Ad9tOlU7DPE39zc01AJqh5BxCXZCgM+RpsHTY0bC4f1ySv2XestxGJFpq0zINl6OUoWRywQOYOWZYKjwzMzBrVKSUzwAA66aaEh/VRCQCZBEimh3XIYQQmBlpWaRbxgFWi1m9KqyHo8hKWonVpcO8QHLPQvozJVsAU80ATFTCMaxaOgvsClC6LeXt4dIseHqGwlx7KreeJHDO2Wtpi0KR/St+1h1PAxOlVNd1oIR1XbdN/Xg4ZREVTSKIGOqKgKZpHMdpnmd23OWmaZrC09l2Tds2p364u39ERPbujOIyMTKpyBCnsv7HETtmcux2O+9YqjpzFoNxGJd+nFkWwTUyAqD3vttunPcxxpyFwAxMVU/9oCervKur0HQtgKFaKZUMoGqqTdc1oRrGQVRR6auXNynLp+C6bXc69sMwlfbPlNLh8e
 
grH95+dRrldOqnYazrutl0VxcX7z9+2e8urm++YhcQIOdYIratze51P5CtIX5B6UusffKhBoAgItM8HE/HYZhMs2d2zokCsqKCSjZAIvKOiYhpDdCqWXROOueckqSkZaifHXt23vlQOQAEJKfmPAIgE6rqUtEXGUe0M8t9yYJWMoQuNCV8yl9XJmTxEPhk5nYmSZfIvSp2L2nl2fqWMH6ePF4h0jUleMKVCjRTsl4pqmx6dtfgYoyFPDuNIzG/uHZNU1dVDYDGOsfEjJcX+7ZppmmepvH+/nEch5zySQfnuKlrBX/sx9MwZlVyblNVOeXCCmXvETHlPI5jnOeUEiLmlDWlTdddXF5cEt3dP07TjFjU/J8CQ/nQzOyrOlRB1nwsiw7zlFJm4q5ti9txhJuuDcxmFkplxuyD2293zNdgNs1z1zRf7u69921dN3UlYo+Ph3mamCnGrFkOh1OOiRD7YUw5i9nrVy+ato0pppR8aFyockoqWVWLCvOStC2hcyVglJoDCYmw/FmRxSxpmqZpGud50pwyEzMjgGdCY2VCAMfkHTMioRGqqmQpUgk2RxmneZpTUkMi77hyvmsbH7rF+NY3Y7bARes0CBVDNANaS8lzwrrkhmsyivTUOoJnDm+trZfwVip9Lfsd1rGTUhKVfSlECGtdf75Q53xjQbbsHNwXX6uLR14AcWeqQCg5IyEjz3HGExX1wGma1KzyjWQZ57mq3HZ7fXmxu729/3x7P/QDmE1hqurKee+8++rFjfcOAI7H0+HYRxEHgER1CLvNJub0+fZuGkdVaZrGAMZ+IMdF/kpXbwRqsAKZzByqwAj9sTfQlCTFGQAIIDCHqvKeYVHzQDLwTN57JCoMnKaqEGyepqap37x6iQgpp5xzjOnFzY3m7BnnubnYb6c5fv5y//n2vqqqEKpxnlXUIXaBX7140XU7YlfKSheCZsqQACBLWsH5pewsi2myZAfOsXtyKsVPIBCiqmURFUm
 
iKWVCgDIpgcBEROgIVvKxJs1lNE2WYZCUYoxziiKGaHW9aZqubdqm9j5474nZMRNS8VNJFBEcczG9BWrEMsX5NDEHS3WyVtxPE55WcgpbqylY4UnEFapcLLeUtlIaEfQshVgvzrn0WZ5HVns/5xKm5b6X5sGyZcVpFkV0zvu6IqTDcbh/OJYyuSBH3jkwSbMeHw/eu8uL3cuXN8j88cPnaZrmGHNKoQreezSrm1pEnONQBTUlYjAz1aqubjZXSPTly21/OhV4KIswYt00oQrjOK54w/IxHFHwftO2zrlhGKdhLBVVoTUG7x1RkUuAnCvvqxBCCNM0IlLXdV3XMNE0z/Mc1bRrm65tX1xfVp6dr6qq+nJ35xjJuYvd7uHxUNfh9vYRifb7bZmrRDQi9M6FqsaV/6U5mRkzgREbq503Fa29uaVaV5HM4IAYgGDBtJGQQwhV8EsdgyQqKcWUpTgSzxgdES40ZQQtLKEi4EpgnjARAFBVN9eX+6vLy65r6yoQO8eMS0wH0Gc7txft+iVNVls2/gkAAwAUKjSoWqmTnhzbiggsQX/NX5dLYWZarH11jUimKmvgXrzgs448IJTXWoGwdRh55Vkv4JSBrWssXCpnkWIScd4557qma5tWVUSyrZV1TGmcZxU5nfrdbnt9dQFmX77cl0gXU5pjmubYzrEKgZkckyn64FW0H8cxxg+fPhFQ1zRFZX2aJnbOORdUDWzZBFj6WgAIRs6Ftokip2FIMWph7gEQEhAZQFKriGrvfPBqdup7s4UC1o+jqrZNNc+RiB4PJwO4vkhVVbdtJ6qq0g+9qe27jhGPp1PlfV1X7Fzwvu8Hx1RVNTuva1Ve9GIRUFUk5wWct+X2LJo0ZT0Nu2X5UWksFXkDREQUyVkkppyyppyhCCESlQEFM9UEEyzlFyM4QiYEYkBgIiarA3vfuarebrcXu31T184xlm7S2iQoyh9rzAcRMUJCgpVTVMBzpsXmVBUBDQt+
 
hmuGWlJDKDXeikYt7nRtiJRyTp87VFxnoJ8wPztDK2CmgMtIdHlWXeP+uV+1Ml4BAEprfUlmEdAxe+9TSkmSiuYspfh3TMGxmn78fHc69TfXV6pWVpoSczkxkvPpeBqY6rpGIiaqEZHRAIa+Tyk5dtc3N7s9jcMIZkRUhVCc5ZKp2DLwh0xMbGJjnHLZnarGRIwEjN57JvSePfESIAlNCxk5jcNoiNeXFzFGJAzB13Wlau8/fqmCB4C2qXbbXV3V9/ePP7z/xzcvr8tNuNhtx2l++9WrLHkcxhB8FSrnvAEsx7WEJDWRnKVMXUqpLXipaNAWZSxaoPD1sq9RTCTnQn5bq3oDQueY0HK24hRK+1TAMqJzzKxIXHzUZts1TVe3XdNsmNgARK103WHFtmzx6LYAQFjE5stWkKWTtLxyGRp+FnlXZZ3nRmaotLI/zUpEWEqcxSjPqNDaKQV4srznF2F9agPAkr+u8PCaBz+lHWYG4JquNTMmBgQkjCmZQRUCGJhomTrJEhM+QQ6H0zBMMyM758ocZhWCimYRx7zdds7xMEXnnJg4dteXF3NM4zSaQRUYknG3IQTHTEybrgXV27uHRcC/pDvEQCR54d2pmiOq6trMFDQE31Y1EBWjAUQ2E8RDjNM8qSgifkiprarNtvPeV1U1DFPOWQ3meXbOp5y7pn5xsZWcfv+HH0vNXIUQk1xc7HebTYqxbaqqqgpSAQCqYklK/00k55xNZalGS/FROptES9JmRcjWFJQIkDCnPMd5mKYpJjNzXGyFAMAxxag5WUqiIqBSArT3DsuoFmIIoa6but003ab0uuaUSyuOEN2yFIWR2GwVU16rt5I5rdUPIQCcx0oLE6kc86LcXswUccF6V31aW0eS1gpqrcbObSsoYuWGAMtQgC2WVox1IR8uQrmrehmeSSa2NEp1ZUUBOO89GjjnRBUQnOOyAfviYi8q93f30zQXvFBVJWfvXQh+nqQAwq6cfTAlc
 
94XHlOZD4wpxZybGqsQ1Gn2vq1rAGDm64vtHNPd4+M0joExeD53BQ2AiOq2qdqNSpJBHTtw3rFDQgKoHTNREiEzds57n2IcYoICkZgCuyx5enione+H7fHUI5GpXWy3vGmrur7Y7w6nU07p4eGh6DOOczycTkm0qcLxeCTiU9+XzNI7t6ZlRXRDRUUkiyQwO7c0ccXt1wTLcBm2XMBtUxXN8zyfTofj6TBNk2fk4IJjIlQmBJ3mFMVkTmaKCHUVgiNfusXOhaqu267bdCE0YDjOsZ/GApYRQ+V929SVeS5COrbgU2fnhYigi8hCSaiLuxUtK/LQAAqlgdcGREHH1kFkNLBz1X8GgYvpPqt2llC8+kpb6qTzFuc1A3jiJp6FzVY28xktRURXVVXOuWkrIhrG2cxc8Ju23W46M/XO9f1wOBxTSrTsldK+H4vYFTOHEABBshhYVdXsuOxUMFNGaOo6eBdTTDHWwVd11TYVAHZN049TTDFOU8r58nKPf/zRkhaYm733oUIiSUrO1XUNZR5a1FSkrNIgMoQ4p2kcUxYog9VgubSuRQzAN/T4eHg8nqrgzSzn/On+7qub67sqTCldbDdTnNnxy1c3CDCneH9/qCp/fbkfpth1m03XFEJCqc2hcJeWFa6GAEVMmcjR+U6t0anYZXERJWcpGfYwDqfTqe+HYRiDI4SKqWJiJqq9l7Y2kQkkpVwElACM0AJD8BQCegZSmcdhmPNpGMseFeewCgwMmjkvK0aX3cl/stoLDASFkBQAlzZBUc43QaRnB2ydVILzx1JVe95jx2Wnk1mpulYlvYXdaQBl6mqZiDz3mFafuuSwazBfsodSjZ1fBQzcfr83zd65lAXnhACXu+1u2wGBGXnvmqYuxA4wkJTGcSqfIaakoqYaqsCOmcgxVcGbOTFIMZqoGey23a5rDsNoprvtlomHYTicTjnn3abbb1tVu9xvf/bN19//4YcSetA5ruumaUNd5ZQgSx
 
ZhIMeWhQpqLSlLzlb2GqkhAJbtOUspBT6EJMoEdVWpKjGdTifn3f3D4fb+4c2rF3cim7bedt0U0+Vuy4QpppRyU1ebTVdVvGmb7bYtTQFmlsJaAss5F+9C5MyMaFkqe3Yr63V/lk2BmRbZkDnnWPRw1HSOyfFCzchqCOYYPXPZzEmgKiqE6ha37fM85jRFvevjnLIVAqggKpiKqqhktXPBsyy3KD6Scdl/XogjxfEr0ULFQxJEJHRET+gYPstDYdEQXz0gPCeL2ApqrqAbFDirLIFeGSnLA21F9Q20KE8U1kXpmp4helMDAueZfN2WOayri13BgcfpbrvtLi/2L64vd5sup/THD59jTKfj4fGRzCyLDv2gqnUd6roqSbMP3gCHfkgpzTGpaE65rcNXLy598HeHUxVC27bf//h+ntNm23775qZr24fD8eF4MoC6rlJMyNy0zdXl5W6z7cfx8Pg4xZTjrCKjiuZsa5timV5acnIzBTBBRCRkYgQUVXIMBC+vb64v9uW6DOPonDOAcY5EtNu4oR+2XUvsri53wzAZyPXl1W7bimRmMtUsUc0hoKioSokeJcU692bWlsgaAZc7eq6SDABSzvM898OUUkYERkCElHIpTHJKKSXJsuKV5lBBxRQkGZkKaB/jGGXKEAUNzDnHTLVDLmurwUTVs8Kic3jev2oAoFj2WayZcoEtzRCBkUqWSEAGkBHLB3ySOT1bGBaCvRGCyaq2gFhWJC4Z5EqJtDUrhVU3qlyeJROFFYGCFTpdW6ELpI8Iqm4YBvY+54ymTVNf7rfTFE/DAADOuU1bi+r98dTUgRGOJ+y6lhCO/dDUAQm994u5gOWcAVBUc1aE5Soc+/Hv/uN3dRUuL3ei+eFw3Gy64/ET4+by8qLttnMW5/zt7f2CZRC2TXNzdRXqKkp2jst1AijZn5oIwJPw3zIys+xEI1vYT+g8Bx9KzgAAPvhffPPm8dSf+rEKXlVD8Mdj/+7D59M
 
w1nVV1/XjYSCCUz+1zenm6pLYqaGa5pwQpOjDSE5lWXwxvTJBIWKAsJZTCE9Ts08VLgOC6uF0fHh8HMbRMXpytmx8N1NNKaeSAjJ7RgITQ2L0rmxN0WGYslq2wv6h4F1VcVfXPnjvGNk5dmKoBkxlXLgEFF1bkWVr3mo6q6vLGYAXGMzMSnOfzr0HW7n3sJZ9z5qU8LSgttjb8mC1Yr4L/LomrE8Zgy1lOwAA4wLJLWnnuco3AwB3d/+w6TZ1UyFSFu28u9l27dCkGA/HU6mKzFRFiHC36fp+VFMfqpJalFXe7JiZ4xxjEgRyjpwLRNS0bRHo+nz7cDgNL24uQqhev3q57br7x+P7D59fvLBt12mjl/vtl89f2LHfbC6/enV1c01IKaY4TvMc8zyLyOIP1kjxFDsQC4Nsyf+ICoQxp8jOVRjGOJ+G8f2nL01bf/Xyep5jGQkZpul0OmXRlHIV9NAPY9+/+eplynLs+8v9pffBlk2F8RzwVGXN64u/hjLHLuukh63wYBmjLc5DVIjIsYNSPs6as6uzD56dK9W+sYHzbCulgwAITAxMdU5SVoUTZCZ0zgcOm9pt2hCCRyIpI8tAWVF0aQqnnM/+HlciSzFTVaJis2vtwsxY8Jx1Azetqq5gcEZZl9q+2Fk5rCsmtQaQJX1d2vFrXnvOD0qHae3+rzmnlbwWzhSAAgE4RIwpMaP3PKf8+HiQ3KkaOvd4ON3fPVzstyEEBdtvWu8dO5YsOethmr1j7z0i+uB3m/Z4Gvq+B6BpNmZXVSGlHOdY7KYfhvoYXr9qHdmbV1fb7ebdpy9ZPn395vW267569fLz3cPx1Fd13Xjf1cGHahz6j2hzjDEWreEzjF/QNWLPBTMmIlMpooMqYiKi5h07A0Qkg9NpyFmuL7aaJKtuu3aSVFfe8/7T7f3j8RRCeHl9daxCSokRqhDmOHehcezmec650OaLyt+512K69GOYtJACFHGhjBGWaaSlri1O
 
ixm99545qUrOmZAZUYAJ0TSJgCktjGcgMFQVkZg1GywUIjMkrIkdagBFzRINwLJhQmbnEZ0ZpKzTnOZ5nqa5GMfCGyd2jokZkFxZH+icqhYBVyIEoLN3LB+yMAxU4Tx2b0tBsxhSacevQFKh7q92CWVIfw36pa5XKLgBLV53wT9X77OKmxgAmquaJqV0OA2qaip1FSTrpmu2bcfE4zhOc5xTUrUUZ88MAHNMYsbMxBScA4QQfEqZHG93u5TSME0ppeAdmA7DmESmcWy7ZrvtRHWc5inGTdt2Tf3p9q5pmov9/vrq+uu3r999+ARMofJ1XV1fXV9fXbndxvi3h8+c+n6eJhEpnsuHyjHbKjKMgFkFwUA0RpBShaQ8i6YUTye32W3die/u7pu63m/boW8Ld+bVzeV+t5li3nTdHKdf//LbYZqiSDkEw9B37YaZNceYo4oyoxHTmkURAREvgt/ETA4KOYCWYdqCg5aStyT6wVMVWDSDFehOsJBcEZkwJpslg6krZsrMzlceagQzUEBH4GmZaYpqGrNaVjMgBjJnRIwiNk5pGMd+mPphlJQBrMwXOOaq8iEEdhzKDKRzxKyqwTtjXpC1QouHwpVHXuc0114RnuuedWPzMi1ccP6lolqxzhKun0DUdVxOn1WSxSJlzecXFMzAtU0DdfV4PPVDjwop5XGKt85tu3p/sa+rKqdU9qjePx4QoK6qzaa9vtzfml3utm3XTNNUenebribCH999FBHnXFZrm4adi/MsOeck4zTvdtvjaXCOHKIjAKQ/vnv/9ds3N69fzznNcxzH2aY4joOjFzeXV5f7i6tu8x9++49fPnw8HQ5xHDVnAHDeNXXdVMHMspqKOCYDO51OAgCZVLKplMS/ClUc43GeEZEc3z9WF9tNEmnbpvIupkzMnum2H+I8v371YpynOaamcobSDz2W/cEGZpbFQJSf5jYL/5KXze8/BfQWwOlZyVLgd8ccfCBUhwAAOWsZY
 
xMAYvKrriwxe0fOccWEoFDm1s1ETZGQyJCSARM7Ju88MhsyIuWc5jiP03Tqh1M/pHkq8bocIu+9d857R0zeOb8sPfdVVdVVVVUBQIkcEZ3ppMuuxRW0KslWaUrpOfVZu6ylT7mw6kzLaJqt4MaSpCOWPTq0WnlJBmytLBhpGZqL88zOeeeD95IyMYlpnud5nh+PQ1WFtm32u00IPsXkvNt03W7blvp9t9s0dXU4nD59vq2bum0qM1C1qqqc45ur/Xa7yWIq0m66z1/u7u7uL7bdy5dXMemU0qaprrftw3H4fHt7c/PCeb/dbcVs6vsvnz7uu2az2Ww3u7/61Z81df0fu/b9Dz88PDzmafaEvq6NCiccm8AhhHIMtt2mrrKUPwCqxgDTNI/z7J2rQpVFjqd+GCdAeEn0+e4wTVMIXkT7YVgmNAkeHk9vXr2s64a5SE1JycsK/aWYGjM5ZMJlCKRgpEwOyia4Qr0lOkMzi1cycwx1IAACMFVLOUczptJ5J+fJOy6rugkNzUiTqZYOpQAoEDISOWQXgg+LPiYhUTZOOReGSE4pzlOcxnmeUaVM0TEzMlNx8lwmI533vqpC29Rz3bRNs2lbH0yJjblIQiwZZylo1rrz3EfiYlhqpR6Sxa0uWJusZq1rQ2lpMsGZSrKSa5/lb1r6+4DueDwhESMwsWvctm0FIOUiO5z7YYwxxhjbtmna2jMHR455Ur25vmya6njqvWNAHMYpHE9zTOM0Vd4H5yRLCOGXr199ur33pz6nfOqHz3eP37x99e3bF5++3B5Pp21X13X98PD423/87RCn4MPlfp9i8sTHx8Px4b4Nzabbvn756svD7Xw6BaJxnsFMY0opiTko/e2iCWaGAMxUheCCr9pWpvnxcDyqkBQyvzla7o9jqrwv7uHh8TiM8xRnRjyehqv9lphSlm9ef1XX9TkKFW9ScileSh+ErAbiEFUZCpy/gNNnhKlwiCyLmGRTUYPKMyEpWB
 
bNKWdREVMxIlRzxFx7xwRQyHlZRFKRVzVidr5yyExNFXZt40MooLkYgFjKBAAIKlkkZclJcwaVUrcbrPMoi4myY3bBzXOwMl9F5BwbgA/IRCIFHi3EDlQDybl8PCIs43dSahxYkgKzsjF3CdxSli3COa+FonTG5xbXOq+9QgV2/pGZuXEYAJGYQgie3TDNarrdbrY3V4dTfzgc52lOMSJAVQUkvH14TDm/uLnqNpsY5+1207WN9+724RhT7vshjhMBsOOH07C7SCH4n33z5re/+66qw+HUG8D7j7evXr64udzPMY7j5MjGcfzhhx/atlNCQuy6hgDv7h5MNQT/6tXby93u9c2Lx9vbY99LSnmeQbToOjvvyHFgbupqTpnBCLBq6zevXjh2X77cMeH11X4cp34YPLskeY6JEczg9vauqirn3P39PSI1dX0/nNq6lZy3281ut51S9N4T01LWApDZuTsPBqqCCCLFUz6BjrZ2QWE1U0JidlVV1VVIKaJpYUMyITpCsIJSSFa1TEgelsoJc0oxDSklEQNgdlWNVeVqh23FPriq8kQIarNoEiO0lLNkycXsRVXFRNZeF6KqFE4goiILUc5sat67kKosOcZExLR+TEQsi6zxzPVcNywv2czyuHMHH/AZc54WT7oQmYlWqGrZMbLSROCpcaVLegSA4BAJCb3ziNiPI5h1bVv2Zu26jtn1x2PKGZBijGAuJQnep5Rvbx9Siiml66vLqq62G4kxHQ6HpmtD8DHlNM+3n2+/a8Lbr17udtuPX+6r4DdtfXc4PRxOlxcXVQjTOBZN4X6cRQyZRPXF9bUPPuU8zfHx8WG7u9hu9t++fptzDN7fO344nXKWGqBI3Q7DoBBdCGKmgMwURIfTgIhlXoCYri52++1WVac5TvMcvD8cj48Pj23bXlxcIGJKkdgR8uPxgI6TCjNt2rr2IVA4RyWAIvDLS5GEi6oblcGeEqnUgIsM1TJxVrIrIvTe+xB
 
CCDmnMx0MAIr/K6BjykaQQRTAQAQkx5SnLGU1cPBGjJK9SgbLYNmUDagkuWiGpqZaCJAp5aLOvlKiYSnenpYciKqiQKmAVFVWPcKy+GaF9E0AHRMRmloRn4BlkGON13YWMoFnlNAClC4VUklyFBCXtc+2etelNFrnR8r/GQI6XwcAIGbnHDtnqqZ2PJ6yyPXlbu+dSsZproIHw2GMTPR4ON3ePRpCCN4xl/H2yntE7DaditZ19fHj55zyoR++fHkIobq82P3s69cPjwdTy2a3d/ffvn2bLvafb+9ubx/6YR7nuQqx67o5p007brt267oQguU8DaftZn95+eLPQqib7vu20/cfjg8PMs6FA2pmQ8o6TioCiOT9cRjv7x9LJOo2m6YKpbk0DsOifQI2z7OKxhinadZlcasgsyENw9jVNSGNU9x0mRMqETOvedgCvkJRpyPjJXxhqUNwaTItzFwod0MlpZhzLuMoomKS5yjDNEvKK4Vy8RyaJBGoWhJRkUJOMTMiqEUNyPvkfHRjJHKESOSyLbRTQkOErGpgxX+W5I/PZwhsAXnKxyAkdrSo1xqYZpGU85KflEX2RLAoZ67wvgEuumKll1foJvYUOgrAtLTdbQWsy4UyWqceoDSl7Jwi4DpEurhZV3QZGNkAVHWKMcZYBV9VYZxiQcjalolpTqmsRCrn0nlXhdC1TRbxzg/jBGb77abwmolwf7G72O+qJjgmEdnvti+uL999/BxjOg3j4fD48ubm8Xj68d2n4/GUUp7GqdzPh4fH/eUFImiMh8MRAJq6vX755sXli227vby4cm3zH/727x8fjjnmMjBUSAnMpGpxGBBwJHREoa58XdGEVFVTjKdTryLe+1M/ZjVDnFN+OJ00ZRERyuyYEVTy8XjabDomkiyZkI1XqJnKTA8qANhZN6SwnEiE2T2bqi1egUpDf44xxjnlbAaO2EiL85mTTHNcFIDBGNEzBbduvipebuUKC6AiipmK
 
xBhHYgB0voBfCGXQouz/hGXAlxFhHYsuGQcTQZk/sXUAuTQ7DHJWp1r6SYgIzCbCAGVG2Vby3mqRZ/BywaHWLtOThN1aDOnZPMEgi66ud5F5MgNFKIt412lPUDCHZo6dc26a52mezdQ5Zu+K5pZ3DAApSco5WEEASUQNLHiHAMM4dm3T1LWI9MP48vpCzT58uq2b5s1XN23X7rcbVfvjD++7Tfvt29cXu+3d/cN+24hkNQvOGeAcY5qjqkqS0FQxp83n21AFU5VNF1Os6qYK1f76Zddtfl7XL65uXlxd/3f/w//j/R++xwTMDAbeMRKlnBAcmJFjDj6Kfvly54O/ubz0zAUR1Cwpp8qHnCKYaYxFb2xOsfNt1zTZ1HknotMc67pwTRacE4nMsNC0zYCJHLOacWkdFTdYeoLPaiRcun4mlj0B1U4ylqctNYtzLqdU/B0wMoKpeUeO0AC9Z1VX8FXvKHhGIDFMApANBWsHXApn1Zg1xmSSQZXAmACZzIxLMki0IOQlA8bSrSmsYU0irmi1qoFZFilbfYnQlMonRESwUiyspbgVd1mm5J7mjHnBbhefWnrFZcSq4BoLy3+1Wjgrh69oKyI6FUkpMVFb18xsZpXzxIwIcZ6D7+qqApvMrEwbIlFdhQJ7qVpK+XQaVVQBNl272XT9MKScry92bdPkJF9u76sqPB5OADDNcds1Kc3brg2e+1P/3Q/v+34owI2IxDir5FylL19ut7utqngmZjw+Pn5pPnKo9hfXdagqH/71X/5L7/x/+z/8j+9+/wfpe43zlBOxI+fIsqpYsphFzbxzdVWJSI6JmBxzVmFmIKtDJSLsuPQr0xy9d03beu9e3lxdXV7UdX1GAgUEoAhkoiqQWrFXOM/TFHIGmKrxsgeqXPlSk6BnrrwfmSVnXcIYIiJTGXgBoqfGtJqBISMQsQAqY1F+V0UzMqCshMaVq5grI1ZEE4hJxzmOc0opS15asqVmh0JtWXyoY
 
dlju5CqSwZb2HIqqlky5YJJgRXxRirJI4oKIYKVDW24wqAABaVHW/v4RebgCdXHpRFma5vDZNG6XzT3cGm/L/ZdcAMnYpjyBNA0zcV+t+0aUe37YZrmcZKmCqPpHBMilgaDmbVtc3WxnebYD9OpHwhximmcpk3X3d4/Hk99OWgiYqpTTOM8A2IWAdPLi0tEmOb5y/3h/v7xh/efU8yExMxF2EPA8jSNw7DdbT27VXTTDodHHz5WoWq3F8zUtdt/+eu/AID/qa6///6P0+lkScoOVslJRbSkRwgK4KaoIsH7y8tLFbl/ePDOtU09V5WBtW0bQnCOh2FUkbZtmrqqq1AFf7HdOO/HccwplsLVIXrHziEXljygKqgYOjiDfcVSCQUQEFdhWwAids4D0BxlTnmc0zRHyQX21sLsoDKqU5TTJCdznm1tOoIYAAExsAIahZJKEgGwiKacj/30eBxPw9xPMeeMYExF8Q4IkLFMrBQneE5OIOsSAVQsZaUsRLlw82BJO4rntVULYrEkfd5kX7nJBTXlc/WOiCvzb4kqixkuoiVSvOw54KyggKoRmRNVVGW1nFLOeY6pwNCErKYfPn6JOXdte3190TZVGQgvcR8ARTITEnHsx2EYS8ibpjmL6KRVXe02HTEP09i1NTNPU5znJCIPj6eY8u+/++HUj8TkwK/NCairWk1Pfd8dT69eXjvvUsrTPIUQ7u9v67qu6oZdS4Sbzf6vf/NXu83mP/zHf/jdP313eDyMj8dxnrzjFFNOidi1bRu8F8nDlASwypkAtrtdW9XOk6myc5cXu912o6rzHMdprKtwud/VdV2CoZnVdZOZYpxzkR0yFikkUcgAZtHMiJDYOSQAKIkQEtPTyKNpwT+N1CyJjnOa5jTFmGKOsUhUWfkPIhAgM3lHCZSX51hLKNKsmhRb4OBDP6akAyGA6hjTcZiPx9PpNEzjVAi7YKXiXmaV8Lm+kkFxq4Rn2P1JwlJUEUnJcE
 
XaiWjZu0aA5/K9IJq2Up/WLxErsSAvMX0ZIzyPdzACPBtFWrNYK52Bwo8jBWcqkiEjeO9yln6cJOdxnGOcY0oIcLHf3dxcXu53zFhCUzGlrg59TzFnQk051XXlmad5VlMTTWbznNqXTaiC907Xaax+mO4eT/ePx3mOwzghqCOXzZwr6xyEENqmnXM+HI7bTeO9c8xf7u6nOe62u+3mmGIMdYPEnvBie/EXv2xeXb14/erl3/7933/84X0YpjTNRIOvKt+2dVUVTKPIJ2Uzk4yio1mLVfCha1tmRsBt13318kVKkRDrqmqaJoTKAB8Oh9OpF0Mt60cyMBMjAljKgoDOeUA085JzKoU8Cy2Rs3iKJX4BQBYxUVWNMZsYQREIMUBgxy67Ocac85wTZYiJvRMm0rXqKjFymqkf4zCnOYn3wxKzAVK2aY7jOKYYJSXJmVau+1KLEBLAcgNxUaa1VYhgsdJ1sYfZMtJbyu9zik1Ey1KFIvVTxIYX4tKahK/D44Qrrrmw+59kSdciHp6p45QsFlZzBQNz5Yp67w2ggAumVrpH5NzVfvfi+qJpGu9YAWKcDscTIg5D1zR1COHqwo3DFLyP83zq+3GcmCirEmKc53EYr6+vjgD9MJpZP/Smev9w6PthnucqODB3sd8C4uPhFGNSkZQyEm67dp7j/cOhrjwTeucOpxMRD9MwTUPVdoGpkMSbugkvXrVNc7G7+Mfr33789OX+/jGXESUwIt50zaatifBwOFqZaidqmsYzg+mu28CicMRNs7m+anJOzBR8xc7N80SApjpNU5aMpaYWJRQgAgAkdEzOPfFxEU3VBISxeCtEOC/h0ZTyOKc5ZlXNZoAUPAXvRDUX+V9YFJ0KMxpMMz1Rh8tWxCzqsuacx3Fynpl96T5m0RijpKSaVaR0DhhtzTqXCkYLYPlUfy9qVnregQBwFn9U1TLnU6xcoQgzCSAScVEgxHUhaOEenjU4zkNwKwj7BKWdlZ7
 
X7xReyfkcrkUSgLu8viyJ0zhNwzDUIQBAjDMivXpxc3mxTzn3w5RFihzSPCdEQCIXwnZTT+N4O47jOB8Oh2me26ZGtDLp4hz74K8v9oR4PPWEMEcZp2Pf90M/DMO42bQF5ri+vCjFLBM+HE79qd9uNvv9rh/GOUbnfcoCgHf3D0i46bZtu3HeEy4pOTm3313+5Z+1b796e39/++7jxz+++/H27m7sRxCZ4uyDe7nb7OoqNM3N9Yuuazdth2bj0JeCwBFXzhNRCKFcl3Kx5mk69sfj6RhjArAijZAKW4UBmDwXgkhpHZaq9KnjBypAvCTRZqo6pzzFPMecRXPOIooGa3O79ACXDmT5pXMxa2eUlNCxc75M2RAgRlGNySTnlMq0foGZFhmwFRQq70nO+jTPxjAUlh6DrIVSCfZudatgpgpFuhEWCYYyUmIASISqi0bVmYas69rLc9FjtkxaP0sGFnB0JSmYnhforGQ8h4BznEVVRQkoZjHTum6cc6Y2T1MuG/tirirftU1p5DLR8TikmCTnOaaHh8M0TT4UnVtYHAriy5urly9eTCmZWdNU3ofTMKUsh+MppUxEu91GVA+nHlfN4q9eXn8AIIJffvt6mOLd42PK2RGrChI/PDz+7vvvQte+9Z6ajnEhDDlHznVN017tr169evPN19+8+/DuD9//cP943227b796/ermRdM028120+0WEA+5LKlMaZKcoQD1gDnFnCIimshUzSI6TqPKIqirjOyYEIiQbZ3bRCvoI7GpKS/PvwCB610yBHLes3PFCJ2Dog6dRUubsNgnsitEOzAoQmLl8UXVh5kZSU1zloUwkXLKWUVKP6Cg8aWuIgIuk+eFf7EilbgO9JXcgxa6arHWkgoubQJf6n9bXKCaiepKgNflZCmULGoRTVvU1IqZPXXVAUB0ZZnimsICrMjU8m9Yl9CVpMGBQfB+nGbnedNtQggiEmPMIqdTP05T2zSd95uuqUKY5nma
 
0xyTY/PBplm9D1nUwPYX+7atNMvx1AOY926aYZomZmJ22+2mqYJjPh57WE/vMIzeu8vmYp6jiHablpnmKb68uZzm2TFf7LY5y3EYsggCpDmq2u3nLx93P1xuLr0PhStUrjISMpBv27quL7b7b15//Zs/+02McwhVW7chBGbnuMyEcYlTRR8hS1X0wMqMmk8+zU5FlWVj29ev3w7j+HD/YIsXRLd0OYjo/1fWlzVJciTn+RGRmXX1NTM4uFxSF2W2K5ErM+n/v+uND6KkXRDkClhgMcBMd1dXVR4R4e568IisWglmAHp6uqqzMj38+Nz9+1idn1zQWEpRJAmhdlP8OftWk5mllOdlllI8x0VkKRKCqFoRLSIkAkgamIOKKVyHs91HQy6FAJMlU3XuQdEqOysiCEBemTumBQQI7LI+jfXzNtK669JqGSqqwaskqG2BZlIu0MhgtdejToSMykxaQU5rkRnQ84HW4L01U6tbRvVv1x+whoRWd65wfR1AcPVSJNoOQ9/1S8mlVMYbVWPmzWZ4erjfDN1lmqd5MdVSihO/Oxf9MPTvnx4B0aSM05RTZkZjTql8+vw6zfN2Oxx2m5KLiuRSxnHsukiE0zTNc9KisevLPG/6+Hi3/+Hjs6o93t+fp7mLHSJGotp5Q7hcLudxkpxU9Le//YeHD18hddxGN7w7gszM3HX9brev9wXqsHgtN82s0QICGHpbEsHQQohFjYOYZgQk5qHv7w53aUnTNJqpAZmq6/ENnfkABBiIKl5LYOe+8yfjqjAyT+Pn1+c///zL68txGqciDjeKk6aoqKhTpNZ3qdRHVbLFAA3N54mMauTVai6ga0mCzQIRkZkMkQCL2G1W556p9i49eiOymvhIlROnmgDwWtiLmvtJIoA2fK2qa9LpDrH6TjOvnHTd8GwZurYRE2g+3tYtu+ZzYXXYZgAQ3o7HGFtLvZRh6O/2OxF9O51yTiJlnufz5ZxyPy/L29u55GSAO
 
ZOo7Laboe/6vgPT4/H0w48fc8rMpFLmccIQlmVZ5nE/DPvd9vPnl6UUr+aJKWIU1SXnl+Pb0+NDCHwe568/vNvvt88vx83Qh8BLSkSwpDROc4yhjzGGcFnS88vx+z99/3j/sNnuAj8iYOCay9hNWIkc2u1YCwJoGb0nr6xKCFiggLgcHnMIkhEJQQARh34YhgERiVlFVKGYGUhnUkRCjNbc91ooYcXFEb1iMjVVkTKN8/l0fj2epmnKjc/H7dLLlrZ0Ve0T2qav+yesOiG26mFQm568AvBQc8/A6ImWeJG+Tk4BGJDnkYIGBmKgIkgC6rMr4lTsFfRZf6kBqgGajyJoLanEqAHvZiJCiC7S0owNWhy4LjJdO24tC/KkuDXuYW2YAkAIxKaaVZGZCWMgKdkMDrvtdhgATIo8v55jnLxNstvtzOWMnE4CcdP3IllVY9+B2WWap3EG02GzSTl/en65v79/ergvuXx+eSPip8e7nPI0L0hoqpfLqGp3d3sV/dNPv9ztd2h2PB6ZaLfbiGDX96/H03gZN5thM/QuIvrp0+efPv707sOXsd/2Qy/1Pq5OAqhlgQAVAGlnst4XJTJVInMw3b2R184q6uALEYUQu9gZQEoZfBSXsYAtuVAoUSSEQOi7H0De+AarDIZmagqmueRxPL+d3pZpKsuUl1mKz69Wxl2/t2ujUOvwbt1+YGifytvooCsg4+nlLcaNCIM3JwFc9kUdpScI5DcBtXLZeHPK1LCospqoUx2YqIooIXmI57oMCKZeBiliPZFXG8QmdLUS1xi0lYL6ceg6GVoN0LtcazIDdSTP3w3MLABiKYUCMWEfY8kyp0REXYw+R7Lfb0MIOWcA6AIV0Wle7u8O758ei5Tz+XyZplJK3/dfvH/69Mun17eTqCEAMavZ5+cXJuqHoeviZogiQwj8nN92203fdy5DP47jMAwcwsdPL2/n0VSnRZBOSLjZ9M4abgDjOKtoiNHMTufL9z
 
/88PDuabPdc3hX0y5ne/zLzHw1WWtbyv7hGzRt0HSaPaAhAsWAhCKEIhx1v9v1fX86n52d3gyJTYXqHp96YlmI2Ut1NrMmpuYdRSnldD69HY+XyyWnZCpoyqAG5gsRRlghyfbItbJU1b0BbGABIJhhRTRbp7FB78hM3n8l8uFiNXBQBSITNXhStdgKdXp17WqctR9gzbZuzknzSczV7RVRpnUx8KYcXKWMW37piBys43kV62xYl7WEWGsIFFXPygAsUOAhUAjBzJ7fTmCKhkRUYjkcdtutSydE3G4A9Hy6HN/OMYanh7uH+8Pr8fh2PuecD/vdbrv55dPz+TyaqsvuDl3UUn76+dM8z09PTyHGIroZBgBMOe0326fHu58/PTNzP/S7bT+nwkgIQEy7GBDhMs4xhE3fxxhUShEdpznkEiMvRb/7/gdTtSz/4T/+5v7dB7AOIzrFu5/mFQJuRnnNyn1F08lCEFthQYjAaOjxrmZViJvN9v7ubhwv8zyr+Bqw525WREQMUJlNxYRVVEkNyZrFGwAUkbQsaZnzsoCUgCaEhAwVbgQDqNTlqutz9cul1nQxrOhhhSuxwuBQh4YBCTvGyAhIapDFzFtchMHFnRAV0GWDwMWV3DE2tQ7fVwb3kQ0tU1M0VFUAAjK6mZzzH0b0ee3q9lazXuv0m8B17ba3L2ogcNIGz3Bw3ZtFCA93ewMspcw5iyoDdF1AgBh5uxnAUEUCD10Xp2lKuQxD/8X7p4e7nWp5PZ5EZDP0h21/nufTecwixIQIMYau786XUaWMl5E5/NXXX0oX53kexzEQbYZutxmeHh/MIAa+vz/Qeco5dTEQQgguRCmXad5vN/vdxic6xmlx+DCGYGAfP/5cyj9eLpff/Pbv3335NeAWQsWr1nB/a6YtiGij3FAEcHYh8fBmLh0qJTuvTlHVwGEY+hACE5takYLkQhlkZiLKEQFBzLhKZNwsjps6WsQhumvSym5cGVyl+W6
 
wSuB5kz+1SgKguk/w1LM2LeufwQDBZ1EdlzVA5y8lAmaMTIHaOryjN17yAAIYke8V14gjaiKmCiLAbP4ZDE1rBQ9QkInwirRjQ46qoa833k1wRVrMfbOfqNZeu75LS1bd8B3+N8MwjbMSDsOwDSGGAACBedN3+8N+6LpSJCX5/PLmyf7Qd/f3u/vDYUnpx58+vb6dnAT55e3y/PnldDqbKiFRF+72u76L4zQ59QO0RH5Z0ul8GS/TF+/fpyJdjH/7619N8xwDH3bDPMNhv0ulmFpOi+MvXeDArKrD0HdddxnnlAsiRGJDez0ef//NN1nKfwZ7/9WvzIYQAt2YI1xDjyG6Fps3bNVVNNR1F1TNtOSU05KXRaXUghiBOOx3hxi7k15KKWoaiVrCVyFPJ2VgDkxc/UR1f6amIcT7+4d3797P8zL3s5QCKqWISMEiRQTMyCmTbgGgmpkhNoYSJlwVDQzASbrALBBFxsAElZRBTTUiMFEgjETtfQEN1FX8GgZaTcopSwkQzKVOTU3VPKCDl2a8+mtPmB1sa7lTm51b+5a+Ue8zTOhQEa6Aa2WE8bH566vWFNU5DsDCOI4xRuw6ZBpih2ix67549wiI85xqbtvY8D03mZd0vlwu49jHsN304zT9/Mvn09sJEZ32qO/idrsRKYgQ2CcmZZrmXBVXMRV5PZ7u7ndE2HcRwAihlDIvqe/C4/1BDVKKx9NlSfP5TbvY5ZReU9ptht2mI4J5XpJACCwmb6fTH7/7bhiGjsPjF19Rpb+sYkt2Q0ForRIyAxHnGpOa+bkWr6mWoipLWtCLAyJk2u52T48Pb29vS81ZDcCHmdANXW/ZCsxUFEyaIg0S0n63+/qrL4ksLYsvNqioqlzGaZ6XeZrnaSpLKqWQKoAFdBQIGI3b4g9C1Qx22fM6gk4YAwYmYgSArCZi7JA/YSAicn5iED+S9VKB1ll2aPpETeLDTyY28NIfELtCcsud6gWtZnU9sjUF
 
sAa/39ZSUAv2inf5oamG5ZVuS3v9r0M/9EM/IMA0zqJyt993MV7GKfbdYb81Uzf81+NbSnkz9OM4//zLc8o5MMUuppxTyjHwbrdlDt5q2++2fcfjuLgmZwisIs/PL0S0rmPPKQ1Lt+kjaNkOXZFSSpmmaZ5HAnh4uNvvhqGP07y8HM9pOauUlHJKadP3wzAMfX8Zp2UuMUYA+/zp8//I/6Sl/P3v/uvDh6+67trMWH1nM9BKoVNDjohlM8JVAAAU0klEQVQrvZqolmyiOaWcZibKOad5jl1HHIZ++PDui7e3t1LyspiqNXHJCg/lIlEkWhsG97holVWGiGKM2+3m4W6/LAEQCTEwRWZ3iCmVcZrf3k7H49vlfJnGUdLi9IDNkRpUGseKwjuvCSEGxuCDz0h+4hyAgNY+1iZG6KCStQwB0Nj/Cq6dr9XkzEzBGKyIsoFVeWFTA18guX5OJCKHe625hVoJ3DyCa24KrU/QlBoqCtaK2mazAIgY+mEAAG+YbTeb7WaQUhBx33XELAJD3xsYB96Fbd91x7fTOI5mlgmnKQGCSjFVV84khN7FN8w3zDGECICvxzMAPNwdfEp/M3RoWkqeTYjg3eNDypazT/rJp+eXnJM3n97d7fuue3l5ndKSMuVctBSVMgzDZujnJaWUWIRDPL29/f6bf0bmf/gv/+3h3ZfO/nzrO/0fUZ/WUfBSybF7KVKSqJaS1URUfTt5LsnA+h4Dh81mc3d3fzydVM2joWuEurn7ZISocuU0WNP8+gUhdTEG5sLeyHTRTQ4hEtHhQO8M8ldf5JzGcXp9Pb28vr6+Hi+ns6YEph5IoaV+DUqjwBhDna9KIimrgSFSdAYyX1ABUDVXAyX0IU5AF+9qdYqDkQAgarG6TwfjIXBYz7rBKg2vWNeDV/j1mne2fytE2tgc1vdABGCsaBo2LMKal8WbWxfSkjwJ22yGu/1OVHNKRLTMy+UyLkvaboa7w/7x4T4wPb+8j
 
uOcixRnU0FERBFx3h816yIPm6GLQUWYYxchMJqJFEHmYehcE5sQRcsyT8qMaGPf+XOMgU3AVMZ5joGYsKiGEB7u73IpqjbPKiKXaU6lDH3fdbH49EaBjPD6+vLNt/887Ha/4e7w8BhjXA+iNXTYP3xt/YmoFKtTOwUAfcyAiUwEwPq+rxQHgfuu326Gvot5SX43vdwpIszk3SMRp0EXqgU2rc7AzFJK85JySj73TQhMAbFGW0Qahj7QQR7t668kp/R8PP7y8y8f//zx9eW1LKkOVACuOyRdpMiIxISYRKesZtYxxUAxUDWOlte1C0aDRo8P5hu+qwFds1t16/GMYuXmNwKDtm/kS/FNCWSt3GGt8lcss/72ViN52ipqDbwGaA/Jv1rzB0MI5/M5MHd9L0VO5wsTiRlSEpVlXsQgMOciqioERHQ4bJeUx3H26biUMjP1fURERo0h7LfDdtOfx7mIhIAxhi4ENT0cDofd5sePn0rOgYmQci59F/vA87Lst/22C6UPS/bDDSKiJRFGUNh0PAz9ZZz6LoyLOgBNYF2kwj0nzKWAaWQoy/Ttt38Ydrvf7H7Xdb3vErWehqeL2cSk5JyWZbzMy1RymecplZxTulwu0+U8TvNlHKd5STlpKSpKIbhevKn1fTS1yBzIwRfMRTopMXSe4NYUoiVStgY0oixlmhcmCrEO+/SddV0k32NzbXeiXb/B3e5wODzd3x/22z/+8fvnnz+ntIDnnWgGFKOTgRERLWJzElGL7AeMAyIhFKgmogBeqRCBKDQYx9bGWgvX0K7XmhHXf1SNqxRj7QtVf+m912piCP/PxmBNWf3+rzm6451XIKBG+YoDXAslAAsi4tG5SOm6oKq+u+XEYPu+N7Pj8Q0A+j5uh76PztqDSwrjZSKSYdOHGEwNI3dDT8zTtKRlJoTtbui76NFov9vMaVly9hnJ2MWHIW6HIVdRoqHrY99Hn7rBSgBquWRE6EL3dLc9n08FYb
 
87FHGiIjrs+t12k4ucx7kU3Qw9MlrKnz5+/D/dN3eHu1Jknqd5msbxMo7j+Xyaxul0OU/jNLrk2zy7Y1MEyaWUDIjEDKrMrAbe+0OEEHjouoe7u6en+4fDduBoToPp6aC2Hnq742YOULuMhnEI93f3l8tpmWeVUkrxOXaHG82gw87bWqoCGfqu32w2zCEXOZ/H6TJKya7KbIDR1eh8lUp0TiWLej3KgYNXRoBkVgB1PSV1J7giTf57nV1RTU2JfdXMTGpC1BDZFnDV1h+t5FRt2xOc56FBntU8bd3ywCv1/FpI2fV7a+SH1ZXXEN910flPOAbRK6Y2dN3Qx1JkmiZiGvqeENSsFCHEh4c7MJgOyzLPuRRABAZVNrW386Qli8pmGDbD0HV+t5AQUi5oQkxD3x12w9BHM8tZN32362PH0IG8XfA8zmYKpqbFFKdc5iUzcd/15/PRpyoQaMrLp9cLM5nBksu8ZFH10XH77/8YkBgxO5qj9TarFxzXxAjqkSfutwN2Xcm5C7zZDGYQQ4yBY+RI9OMvz7mUKRc5HqeUXt82D4fdX33x2K0TVQamUkphLoGDEjuICC3CMtF2s/vw/ot5mY8vn6WU5Gv12lAEr2gYzCDlUkQGHQKH/XZz2O+7vgNE393pAm0iIyIB5iznJKUIB45MHVMM3LEPF4MaYsVcnSyy1s8ebREAQdFFPAy5Si9ALZEcuIHKxlvb5dV0gAwIkW59J9xaFzTErNke4K1vrT93BQpuav+bFwJAIGIzW1LCXJjR5w4J0VTO55xTJqZh6D3zm5dEYBy7/XbbdbEUSWl2AF9FUhFULVIA8eFuv9/vNpshBEKRcZ6nSS7jlHMhMJMyT/M4TiaSckGiTy9v05J1WS5LHuekRZFIAXIWABAz8WxJ69SPj3m120yE6BpnDdhBW7sUBsgUQyBmcNhTxZ+CAAQwJCZmy0UAus1GU0pzssBzLuxxvGgMrKWAWVablgWILks6nS9
 
/92//+uHurqiIlFzIAEMouWRiFqnL5j5LogYU+O5w//WXX0vJ57ejw3ArDsUUQlBELKLTNOWS+3642x9UrY+hC9HxUCbqmAlRDHKROUkRDUx9oL4LQ+AQAiCKT0itjsjvk88p+7QIgrpUMQAYtLUNU1UPCBU2p1r0GxgBrrdX0XvuWOEqwLrCVZVr3LPC+vv/vy9uc8/qpKtZ37hY8CIJwYpqYy7H0MUuRwQTNSbaxk3OZV4SghHRdjv8+ssP7x7vmclUcu7PfZ9ymqZFL+NlSSllM8spv7xeFKGksizzkkopJeUiClbhx3ppdX6mHqu6boitaXbTCmqwBDa7A+v7jpjHcfJDSE5I4LEMcf/01B/2m74//vSxlLx/fNrttv12+Paf/rfj8GQmZqRqpkKBCEEEkUrO5CR3mgWgeNXffq2ITcvCRJ9Tmv7Xv/zm7/72w9N9kQKZkIJHM5FCRCLA7PHNPwrGrru/fyqSfzSYLqfWLii5MC5zylkNRORymVLJm83Gw/C8LFnFAALjEJkIFUBFp1SKKBP2kTdd6COHwNAcJCGwuZKx943AsClyuHX6NEkbdyqiQK71B0T1IBOCoSkh15ebI/dOzF5dI1FFNFuqXQe5V3d6Dd14PRPXx3vbC71iyf6tUHLy5Al9Y8EZ9IoQIjEjwGW8iKgUQcS+6/a77dvr6XQ8zSm5bsU4ZxE5T9M8LUWtqFopVmn1aibTnH514h5dvPVgNXmutSZWYgH1DAZUCakWmW5+oqYCxIioCiLZcy4T9SBpRZylo8zz01cfdveHy/PLdLmcxwsEvFxO5lNkhABYZUGKACr5vTUwU9IqKaBtrZ2Q0JCYDbGIFjUEyHn8n3/419/9p39/t9+JFNMiJQsHQhLMAIgoCGrkhIcIiH3fPz68E7XnzyG5uA8REqVi83yelrTMaVkWIALDE5/Ssnz85WWeZkJwvnA1SKJLKqkoEXaB+8Aup+SR3Wyl7qqYe+X2rF4R
 
18UkA59RMbvRj3Oks9qKGxgSVO7/6u+rHdY/tI3N6voaRXRD8HHNAW4zgBs3uXaQbssydzSuduqqJb6SYmVJvl4j1mZbmkTZZZqej2+ilfy/fmTC2lpoJQJWVj4lbAwpWHtdgCDSph0QsfaOgYmM6s42EiNCSdlXPZG5nTIjZslFTJ3iAwhFPBkidRUT36pBBIBlGv/0zbcqlVQ7ny6fz2cRicQYgvkcbt0R9t1bD7VcJ46d1c33exAICAjNVPyB+Z0xe7mMv//2T7/7zb+LwdKyeoyq6mCmzExgQAZWPQ1z2O/uum5AxMDRZ2tSyqfz6eX19Zfl87RkMNAiry+v8zgdT6cyzQGRyTvizvUiRLSJFAPHQFWLEcBXLg3RAVkD1FaA0NWJAiBBZchBbfi8udxUq+9xHQiogZtW4hv/ayc7gSY5fq1+/H0rHEa1adRstMX0vzDF1XGu7+/1QvCRQZeq0gYZqpo6S4CPmdSBNChiAE2/o5Ua0LABu7p09AYxUWMd8DlwIkV0CW0MoePgFYK7F4C6mswtlDiJMIhKyVKkpkn105m07BsQjcldgVNZYtVGA1N1/9RSPehCrFmA4xwtDtXM1dPbGLz1ylqRca2llvPUARMBB4rR1VOeX0+vx9PT450VQsoGUKT0XSche6EVYgQItfAQUZG+73fbfQwxhFCLNpGnp3fv34/v3j1/9/33f/rhxx8/firLwqBsQqaAoICmNmXJRZgxBu4jd13sYqSG5DhCpAZSR+zB5wZ8mUIrY0MNWW4lAUGrAyEidI7bhiBDS5QNXSCs3kqqVdJNZolVMQLEqq/0b1q7t6s1ri7zLxwnrq+oxGMAEFyVR1Swvq7CqvWtoYqGae00GFRx3CpgX/1oiyX+cg4hdhGRvOpUNS3ZT23d0DbQItOSKmq8TgqQ3xcFAAKqd0FN/fIIpW2ZWz0O6IeePG1vC0cYWK4pbFuaRIC6OuZsa2ae+SMGZKe1r8hKQmLWX
 
Fwecm1DOQRpAAURuZBqiB0xTSn//Hz86sOTc9XHGGIIoiZpURWLilh5AXzXMYSw6frA0Yc369YDABKGwLvt5vH+/unp6Ztvv/3lp5/yNEYCBhKDopZLyUUNoAu06UIXA4fg5Q9jZRfzR1H5u7V6eh+sqv6krntAnbOzSqy/XgggNk4cvHGlNTez9Ut/4Zo1ErVhwesNtxpTbQ33t2DcreOE1pLFduGIEJD4WgFUC7WVuKyaf8Vi1y0T0yY9iIDrgun6i31QB8FW2vaVMkpbc78+b0Q0tDVNrhJEgDXBUKzTWw51oI9F+bVRQxCb0/ZLVIXKKOd4HiG6rwVfloPKCOzllBYLTP5snTLJ3bKJBGJPNOv8uidrqGbq6bMVEcwAQcwuWTwKeoOVQzA1p05ELGZKRBy6GHo/vYEjVa5Or63FzCU+LIbw8PBwOBy+/uKLf/3jv3z3x2/H1xfJUkRTKbmYmXWRQwgUmCudrgJQMdCGuzeXYT4jpw3P/EvPtaZ+BFUIgpl8lg4JyYeu1dwH11vdkKgaM2m1O2gWA1Wy+9Ykrj1QuO4bXd0qrtkqXOslNQMIfoIcFHA/4Y8EW+BTbaOyiCvBxNoZa1F9nT8ARwOaL/KOAbpktyGtVJrNE3qeBC1/bR+hJkHg5Fa3rn1NGLQ11xBx3QX09EDluhpYf+paollTP6nfN1W1AoimRlWWDwCsqCATuC6Lj3+hVdm06h8MDdCMmNOcUirUU8qFQzAtuRTnIo0x9v1mt9v3/cYNlOoGRXsHADMrLu7BrhGDzPzh/Ye7w/7Du8dv/vD7H/70Yz6PToDXRRpiiDF2zA5OO/zu8TG0FhGs8xCoq/34HSGAutJqoADMFJidv5KZXfpbnaaHzNePSK3uK5iBmrfSDUypqsyoGQFBW5harRXbI7uxSAODdZMJrwG/rot5IxqJQDVwDKZa1XEBWy9r3SgADq3DBUbEiOsZrWRU9QJW4/c82we/Ddb2N7QawV
 
q6oLCOfpEUBwV9VNHM5Si6vjvsp5cXLeLKj+t5rElxjVGK2OgrbnqMyEziCJGfKN9Qg7prVtMEBEABIzNP9LniDz6dWdc13ZzNFOsX6MvhaErABJCWdJnmGNgAci6qMs9zEYkh9F3Xd7ELMbDLDVQc11o9a35hKgZiVlFFzx77fvvll7+6jOPHz8fl9SSqMfIQOUYOTB7Trfmu5ubqLVh5ofysqvojaoPrHsF8x44CkEsmVTkGf8wG5s7K6tq7Qht2r12g5tFAa/sDKmiDayMNWm/dh0wBoA0A6C26szr9a0dU1cBC4GDkV9+yzBXz9yQFVwqK1ZFdE4LqJAFahmotCBgYmppJqb/MBZkBEZCYQgzU93le+s32/a//5vP3352eP/nkm98/DhyGAZlXuoHmQ/2Wo62p/urHGxeeX7yWQmui0k5KayZXdwrY+hmInjzUil4rhQG1zNMqveD67mCEqqiqhJRULuOy7bsQ9ZxzkYKEfey7GBFRREQzC4OBS87VigRJwVRFck55RgAIaIDcVkSRHDp93O52hhRi6ALFyEhciRPBRF1WGOlKKltp3hXWR2k1ufSPpVp/DpGIkchtE4m9dFQzMedchIpauas29CE8n1wz5JrOX2MgoK9IA1R2xTYnbpW/pBXWWjmhK2TQ7iy0+RJ/r9CYxFo9ezPLX61hHUg0xXYckdZThboiKus0YU05tCqPQisIyTcfgTnsHx9ou3n788+B+fD4eH55eXv5bG1AC8yAKA5DWhYTqQOD1bdd8d0GSHjMaFnP6rO19javiVe7EbWkb6mtf2y8Ge+u1r/CBgBonrbadZxOGwsWqojlnEpOl1HUlJm2my1VsFZLkZQyGDEbMleCFwaj6ziJFEHweX8hysxBW7L3eH//b/7mr89vx+V4JIDaO1YpAMVA1Vu8GJmtldV+gNvYKtQWsHtvtSKVS9DpJzgEInZtEiBSF7kz8HWkla+UjMzZmKAen+Y/cS1IoO3
 
lwU0BtP5XVrTJy6D66JzpxLHv+hRW6wsVWGnfamlus83V/66bMrjaH4A76ht7lurq6oPFa+FVk0VCNB8QE6MlA6CJ5mXG1kZyX4vMHAIA2rI45o/12lrN6G/rw93tTNj16AEAEhN4U98BPzPTumpOgOZdaPVHxL5eiTXpqEmVrSxbjfN//WDr/xTBEFR0zmVKScWQMDCbWS4lFAakEDRnAcgBkFwD07nNlCpMiBS7IS2jSVYzJEk5OTMCMyPS4/3h3ePdz9MIIoC1/WMAYi7dC4YE4Pp0gK5600YLPexXIohKKA5iQOs4FDMyM3GFPG+Ki3rP1JiaMmqlGSOX4VLzHN3M72ZlnKwv9lu5GkmN0c3D113VenbcsNHaipQ/7v8LuhRpugWd6nYAAAAASUVORK5CYII=)"
-                       ],
-                       "metadata": {
-                               "id": "gW4cE8bhXS-d"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "image_data = (periodic_impulse | 
beam.Map(lambda x: \"Cat-with-beanie.jpg\")\n",
-                               "      | \"ReadImage\" >> beam.Map(lambda 
image_name: read_image(\n",
-                               "          image_name=image_name, 
image_dir='https://storage.googleapis.com/apache-beam-samples/image_captioning/')))"
-                       ],
-                       "metadata": {
-                               "id": "dGg11TpV_aV6",
-                               "outputId": 
"a57e8197-6756-4fd8-a664-f51ef2fea730",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 204
-                               }
-                       },
-                       "execution_count": 11,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "3. Pass the images to the RunInference 
`PTransform`. RunInference takes `model_handler` and `model_metadata_pcoll` as 
input parameters.\n",
-                               "  * `model_metadata_pcoll` is a side input 
`PCollection` to the RunInference `PTransform`. This side input is used to 
update the `model_uri` in the `model_handler` without needing to stop the 
Apache Beam pipeline\n",
-                               "  * Use `WatchFilePattern` as side input to 
watch a `file_pattern` matching `.h5` files. In this case, the `file_pattern` 
is `'gs://BUCKET_NAME/*.h5'`.\n",
-                               "\n"
-                       ],
-                       "metadata": {
-                               "id": "eB0-ewd-BCKE"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               " # The side input used to watch for the .h5 
file and update the model_uri of the TFModelHandlerTensor.\n",
-                               "file_pattern = 'gs://BUCKET_NAME/*.h5'\n",
-                               "side_input_pcoll = (\n",
-                               "      pipeline\n",
-                               "      | \"WatchFilePattern\" >> 
WatchFilePattern(file_pattern=file_pattern,\n",
-                               "                                               
 interval=side_input_fire_interval,\n",
-                               "                                               
 stop_timestamp=end_timestamp))\n",
-                               "inferences = (\n",
-                               "      image_data\n",
-                               "      | \"ApplyWindowing\" >> 
beam.WindowInto(beam.window.FixedWindows(10))\n",
-                               "      | \"RunInference\" >> 
RunInference(model_handler=model_handler,\n",
-                               "                                      
model_metadata_pcoll=side_input_pcoll))"
-                       ],
-                       "metadata": {
-                               "id": "_AjvvexJ_hUq",
-                               "outputId": 
"291fcc38-0abb-4b11-f840-4a850097a56f",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 133
-                               }
-                       },
-                       "execution_count": 12,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "4. Post-process the `PredictionResult` 
object.\n",
-                               "When the inference is complete, RunInference 
outputs a `PredictionResult` object that contains the fields `example`, 
`inference`, and `model_id`. The `model_id` field identifies the model used to 
run the inference. The `PostProcessor` returns the predicted label and the 
model ID used to run the inference on the predicted label."
-                       ],
-                       "metadata": {
-                               "id": "lTA4wRWNDVis"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "post_processor = (\n",
-                               "    inferences\n",
-                               "    | \"PostProcessResults\" >> 
beam.ParDo(PostProcessor())\n",
-                               "    | \"LogResults\" >> 
beam.Map(logging.info))"
-                       ],
-                       "metadata": {
-                               "id": "9TB76fo-_vZJ",
-                               "outputId": 
"3e12d482-1bdf-4136-fbf7-9d5bb4bb62c3",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 222
-                               }
-                       },
-                       "execution_count": 13,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "### Watch for the model update\n",
-                               "\n",
-                               "After the pipeline starts processing data and 
when you see output emitted from the RunInference `PTransform`, upload a 
`resnet152` model saved in `.h5` format to a Google Cloud Storage bucket 
location that matches the `file_pattern` you defined earlier. You can [download 
a copy of the 
model](https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet152_weights_tf_dim_ordering_tf_kernels.h5)
 (link downloads the model). RunInference uses `WatchFilePattern` as a side 
input to update the `model_uri` of `TFModelHandlerTensor`."
-                       ],
-                       "metadata": {
-                               "id": "wYp-mBHHjOjA"
-                       }
-               },
-               {
-                       "cell_type": "markdown",
-                       "source": [
-                               "## Run the pipeline\n",
-                               "\n",
-                               "Use the following code to run the pipeline."
-                       ],
-                       "metadata": {
-                               "id": "_ty03jDnKdKR"
-                       }
-               },
-               {
-                       "cell_type": "code",
-                       "source": [
-                               "# Run the pipeline.\n",
-                               "result = pipeline.run().wait_until_finish()"
-                       ],
-                       "metadata": {
-                               "id": "wd0VJLeLEWBU",
-                               "outputId": 
"3489c891-05d2-4739-d693-1899cfe78859",
-                               "colab": {
-                                       "base_uri": "https://localhost:8080/";,
-                                       "height": 186
-                               }
-                       },
-                       "execution_count": 14,
-                       "outputs": [{
-                               "output_type": "stream",
-                               "name": "stdout",
-                               "text": [
-                                       "\n"
-                               ]
-                       }]
-               }
-       ]
-}
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "provenance": []
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "language_info": {
+      "name": "python"
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "code",
+      "source": [
+        "# @title ###### Licensed to the Apache Software Foundation (ASF), 
Version 2.0 (the \"License\")\n",
+        "\n",
+        "# Licensed to the Apache Software Foundation (ASF) under one\n",
+        "# or more contributor license agreements. See the NOTICE file\n",
+        "# distributed with this work for additional information\n",
+        "# regarding copyright ownership. The ASF licenses this file\n",
+        "# to you under the Apache License, Version 2.0 (the\n",
+        "# \"License\"); you may not use this file except in compliance\n",
+        "# with the License. You may obtain a copy of the License at\n",
+        "#\n",
+        "#   http://www.apache.org/licenses/LICENSE-2.0\n";,
+        "#\n",
+        "# Unless required by applicable law or agreed to in writing,\n",
+        "# software distributed under the License is distributed on an\n",
+        "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+        "# KIND, either express or implied. See the License for the\n",
+        "# specific language governing permissions and limitations\n",
+        "# under the License"
+      ],
+      "metadata": {
+        "cellView": "form",
+        "id": "OsFaZscKSPvo",
+        "outputId": "f9903a54-13d4-403c-a705-a212be050fed"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Update ML models in running pipelines\n",
+        "\n",
+        "<table align=\"left\">\n",
+        "  <td>\n",
+        "    <a target=\"_blank\" 
href=\"https://colab.sandbox.google.com/github/apache/beam/blob/master/examples/notebooks/beam-ml/automatic_model_refresh.ipynb\";><img
 
src=\"https://raw.githubusercontent.com/google/or-tools/main/tools/colab_32px.png\";
 />Run in Google Colab</a>\n",
+        "  </td>\n",
+        "  <td>\n",
+        "    <a target=\"_blank\" 
href=\"https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/automatic_model_refresh.ipynb\";><img
 
src=\"https://raw.githubusercontent.com/google/or-tools/main/tools/github_32px.png\";
 />View source on GitHub</a>\n",
+        "  </td>\n",
+        "</table>\n"
+      ],
+      "metadata": {
+        "id": "ZUSiAR62SgO8"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "This notebook demonstrates how to perform automatic model updates 
without stopping your Apache Beam pipeline.\n",
+        "You can use side inputs to update your model in real time, even while 
the Apache Beam pipeline is running. The side input is passed in a 
`ModelHandler` configuration object. You can update the model either by 
leveraging one of Apache Beam's provided patterns, such as the 
`WatchFilePattern`, or by configuring a custom side input `PCollection` that 
defines the logic for the model update.\n",
+        "\n",
+        "The pipeline in this notebook uses a RunInference `PTransform` with 
TensorFlow machine learning (ML) models to run inference on images. To update 
the model, it uses a side input `PCollection` that emits `ModelMetadata`.\n",
+        "For more information about side inputs, see the [Side 
inputs](https://beam.apache.org/documentation/programming-guide/#side-inputs) 
section in the Apache Beam Programming Guide.\n",
+        "\n",
+        "This example uses `WatchFilePattern` as a side input. 
`WatchFilePattern` is used to watch for file updates that match the 
`file_pattern` based on timestamps. It emits the latest `ModelMetadata`, which 
is used in the RunInference `PTransform` to automatically update the ML model 
without stopping the Apache Beam pipeline.\n"
+      ],
+      "metadata": {
+        "id": "tBtqF5UpKJNZ"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## Before you begin\n",
+        "Install the dependencies required to run this notebook.\n",
+        "\n",
+        "To use RunInference with side inputs for automatic model updates, use 
Apache Beam version 2.46.0 or later."
+      ],
+      "metadata": {
+        "id": "SPuXFowiTpWx"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "1RyTYsFEIOlA",
+        "outputId": "0e6b88a7-82d8-4d94-951c-046a9b8b7abb",
+        "colab": {
+          "base_uri": "https://localhost:8080/";
+        }
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\n"
+          ]
+        }
+      ],
+      "source": [
+        "!pip install apache_beam[gcp]>=2.46.0 --quiet\n",
+        "!pip install tensorflow\n",
+        "!pip install tensorflow_hub"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Imports required for the notebook.\n",
+        "import logging\n",
+        "import time\n",
+        "from typing import Iterable\n",
+        "from typing import Tuple\n",
+        "\n",
+        "import apache_beam as beam\n",
+        "from apache_beam.ml.inference.base import PredictionResult\n",
+        "from apache_beam.ml.inference.base import RunInference\n",
+        "from apache_beam.ml.inference.tensorflow_inference import 
TFModelHandlerTensor\n",
+        "from apache_beam.ml.inference.utils import WatchFilePattern\n",
+        "from apache_beam.options.pipeline_options import 
GoogleCloudOptions\n",
+        "from apache_beam.options.pipeline_options import PipelineOptions\n",
+        "from apache_beam.options.pipeline_options import SetupOptions\n",
+        "from apache_beam.options.pipeline_options import StandardOptions\n",
+        "from apache_beam.options.pipeline_options import WorkerOptions\n",
+        "from apache_beam.transforms.periodicsequence import 
PeriodicImpulse\n",
+        "import numpy\n",
+        "from PIL import Image\n",
+        "import tensorflow as tf"
+      ],
+      "metadata": {
+        "id": "Rs4cwwNrIV9H"
+      },
+      "execution_count": 4,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Authenticate to your Google Cloud account.\n",
+        "def auth_to_colab():\n",
+        "  from google.colab import auth\n",
+        "  auth.authenticate_user()\n",
+        "\n",
+        "auth_to_colab()"
+      ],
+      "metadata": {
+        "id": "jAKpPcmmGm03",
+        "outputId": "8776c778-54f5-497c-d929-15b7bca98595"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## Configure the runner\n",
+        "\n",
+        "This pipeline uses the Dataflow Runner. To run the pipeline, you need 
to complete the following tasks:\n",
+        "\n",
+        "* Ensure that you have all the required permissions to run the 
pipeline on Dataflow.\n",
+        "* Configure the pipeline options for the pipeline to run on Dataflow. 
Make sure the pipeline is using streaming mode.\n",
+        "\n",
+        "In the following code, replace `BUCKET_NAME` with the the name of 
your Cloud Storage bucket."
+      ],
+      "metadata": {
+        "id": "ORYNKhH3WQyP"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "options = PipelineOptions()\n",
+        "options.view_as(StandardOptions).streaming = True\n",
+        "\n",
+        "# Provide required pipeline options for the Dataflow Runner.\n",
+        "options.view_as(StandardOptions).runner = \"DataflowRunner\"\n",
+        "\n",
+        "# Set the project to the default project in your current Google Cloud 
environment.\n",
+        "options.view_as(GoogleCloudOptions).project = 'your-project'\n",
+        "\n",
+        "# Set the Google Cloud region that you want to run Dataflow in.\n",
+        "options.view_as(GoogleCloudOptions).region = 'us-central1'\n",
+        "\n",
+        "# IMPORTANT: Replace BUCKET_NAME with the the name of your Cloud 
Storage bucket.\n",
+        "dataflow_gcs_location = \"gs://BUCKET_NAME/tmp/\"\n",
+        "\n",
+        "# The Dataflow staging location. This location is used to stage the 
Dataflow pipeline and the SDK binary.\n",
+        "options.view_as(GoogleCloudOptions).staging_location = '%s/staging' % 
dataflow_gcs_location\n",
+        "\n",
+        "# The Dataflow temp location. This location is used to store 
temporary files or intermediate results before outputting to the sink.\n",
+        "options.view_as(GoogleCloudOptions).temp_location = '%s/temp' % 
dataflow_gcs_location\n",
+        "\n",
+        "options.view_as(SetupOptions).save_main_session = True\n",
+        "\n",
+        "# Launching Dataflow with only one worker might result in processing 
delays due to\n",
+        "# initial input processing. This could further postpone the side 
input model updates.\n",
+        "# To expedite the model update process, it's recommended to set 
num_workers>1.\n",
+        "# https://github.com/apache/beam/issues/28776\n";,
+        "options.view_as(WorkerOptions).num_workers = 5"
+      ],
+      "metadata": {
+        "id": "wWjbnq6X-4uE",
+        "outputId": "2125c017-dfd4-4402-f02a-8469f67409a8"
+      },
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "Install the `tensorflow` and `tensorflow_hub` dependencies on 
Dataflow. Use the `requirements_file` pipeline option to pass these 
dependencies."
+      ],
+      "metadata": {
+        "id": "HTJV8pO2Wcw4"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# In a requirements file, define the dependencies required for the 
pipeline.\n",
+        "!printf 'tensorflow>=2.12.0\\ntensorflow_hub>=0.10.0\\nPillow>=9.0.0' 
> ./requirements.txt\n",
+        "# Install the pipeline dependencies on Dataflow.\n",
+        "options.view_as(SetupOptions).requirements_file = 
'./requirements.txt'"
+      ],
+      "metadata": {
+        "id": "lEy4PkluWbdm"
+      },
+      "execution_count": 7,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## Use the TensorFlow model handler\n",
+        " This example uses `TFModelHandlerTensor` as the model handler and 
the `resnet_101` model trained on [ImageNet](https://www.image-net.org/).\n",
+        "\n",
+        "\n",
+        "For DataflowRunner, the model needs to be stored remote location 
accessible by the Beam pipeline. So we will download `ResNet101` model and 
upload it to the GCS location.\n"
+      ],
+      "metadata": {
+        "id": "_AUNH_GJk_NE"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "model = tf.keras.applications.resnet.ResNet101()\n",

Review Comment:
   We should have something similar to get the resnet 152 model below



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to