Strikerrx01 commented on code in PR #34135:
URL: https://github.com/apache/beam/pull/34135#discussion_r1979579457


##########
sdks/python/apache_beam/io/gcp/bigquery_tools.py:
##########
@@ -351,6 +352,9 @@ class BigQueryWrapper(object):
   TEMP_DATASET = 'beam_temp_dataset_'
 
   HISTOGRAM_METRIC_LOGGER = MetricLogger()
+  
+  # Default TTL for cached table definitions in seconds
+  DEFAULT_TABLE_DEFINITION_TTL = 3600  # 1 hour

Review Comment:
   @sjvanrossum Thanks for pointing this out. You're right that 1 hour TTL is 
too long for streaming pipelines. Here are my suggestions for improvement:
   
   1. Change the default TTL to 1 second to match Java SDK's behavior: 
      DEFAULT_TABLE_DEFINITION_TTL = 1 # Match Java SDK's TTL for consistency
   
   2. Use cachetools.TTLCache with thread-safe implementation:
         from cachetools import TTLCache
   from cachetools.keys import hashkey
   from functools import partial
   #Use thread-safe TTLCache with proper key function
   self.table_cache = TTLCache(
   maxsize=self.DEFAULT_CACHE_MAX_SIZE,
   ttl=self.DEFAULT_TABLE_DEFINITION_TTL,
   getsizeof=None)
   
   3. Add documentation about TTL implications:   TTL is kept short (1s) to 
ensure table schema changes propagate quickly
   in streaming pipelines while still providing protection against excessive
   API calls in high-throughput scenarios
   
   Would these changes align better with the expected behavior? I can also add 
configuration options to allow users to tune the TTL if needed for specific use 
cases.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to