yeandy commented on code in PR #17470:
URL: https://github.com/apache/beam/pull/17470#discussion_r883862189


##########
sdks/python/apache_beam/ml/inference/pytorch_test.py:
##########
@@ -122,6 +137,94 @@ def test_inference_runner_multiple_tensor_features(self):
     for actual, expected in zip(predictions, expected_predictions):
       self.assertTrue(_compare_prediction_result(actual, expected))
 
+  def test_inference_runner_kwargs(self):
+    examples = [
+        {
+            'k1': torch.from_numpy(np.array([1], dtype="float32")),
+            'k2': torch.from_numpy(np.array([1.5], dtype="float32"))
+        },
+        {
+            'k1': torch.from_numpy(np.array([5], dtype="float32")),
+            'k2': torch.from_numpy(np.array([5.5], dtype="float32"))
+        },
+        {
+            'k1': torch.from_numpy(np.array([-3], dtype="float32")),
+            'k2': torch.from_numpy(np.array([-3.5], dtype="float32"))
+        },
+        {
+            'k1': torch.from_numpy(np.array([10.0], dtype="float32")),
+            'k2': torch.from_numpy(np.array([10.5], dtype="float32"))
+        },
+    ]
+    expected_predictions = [
+        PredictionResult(ex, pred) for ex,
+        pred in zip(
+            examples,
+            torch.Tensor([(example['k1'] * 2.0 + 0.5) +
+                          (example['k2'] * 2.0 + 0.5)
+                          for example in examples]).reshape(-1, 1))
+    ]
+
+    class PytorchLinearRegressionMultipleArgs(torch.nn.Module):
+      def __init__(self, input_dim, output_dim):
+        super().__init__()
+        self.linear = torch.nn.Linear(input_dim, output_dim)
+
+      def forward(self, k1, k2):
+        out = self.linear(k1) + self.linear(k2)
+        return out
+
+    model = PytorchLinearRegressionMultipleArgs(input_dim=1, output_dim=1)
+    model.load_state_dict(
+        OrderedDict([('linear.weight', torch.Tensor([[2.0]])),
+                     ('linear.bias', torch.Tensor([0.5]))]))
+    model.eval()
+
+    inference_runner = PytorchInferenceRunner(torch.device('cpu'))
+    predictions = inference_runner.run_inference(examples, model)
+    for actual, expected in zip(predictions, expected_predictions):
+      self.assertTrue(_compare_prediction_result(actual, expected))

Review Comment:
   I've changed this to a simple `self.assertEqual(actual, expected)`



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to