alamb commented on code in PR #15353:
URL: https://github.com/apache/datafusion/pull/15353#discussion_r2008792240


##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.
+
+### Implementing Custom Expression Planning
+
+To extend DataFusion with support for custom operators not natively available, 
you need to:
+
+1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate logical expressions into physical 
execution plans.
+
+   For a detailed documentation please see: [Trait 
ExprPlanner](https://docs.rs/datafusion/latest/datafusion/logical_expr/planner/trait.ExprPlanner.html)
+
+2. Register your custom planner: Integrate your implementation with 
DataFusion's `SessionContext` to ensure your custom planning logic is invoked 
during the query optimization and execution planning phase.
+
+   For a detailed documentation please see: [fn 
register_expr_planner](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html#method.register_expr_planner)

Review Comment:
   ```suggestion
      For a detailed documentation see: [fn 
register_expr_planner](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html#method.register_expr_planner)
   ```



##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.
+
+### Implementing Custom Expression Planning
+
+To extend DataFusion with support for custom operators not natively available, 
you need to:
+
+1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate logical expressions into physical 
execution plans.
+
+   For a detailed documentation please see: [Trait 
ExprPlanner](https://docs.rs/datafusion/latest/datafusion/logical_expr/planner/trait.ExprPlanner.html)
+
+2. Register your custom planner: Integrate your implementation with 
DataFusion's `SessionContext` to ensure your custom planning logic is invoked 
during the query optimization and execution planning phase.
+
+   For a detailed documentation please see: [fn 
register_expr_planner](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html#method.register_expr_planner)
+
+See example below:
+
+```rust
+# use arrow::array::RecordBatch;
+# use std::sync::Arc;
+
+# use datafusion::common::{assert_batches_eq, DFSchema};
+# use datafusion::error::Result;
+# use datafusion::execution::FunctionRegistry;
+# use datafusion::logical_expr::Operator;
+# use datafusion::prelude::*;
+# use datafusion::sql::sqlparser::ast::BinaryOperator;
+# use datafusion_common::ScalarValue;
+# use datafusion_expr::expr::Alias;
+# use datafusion_expr::planner::{ExprPlanner, PlannerResult, RawBinaryExpr};
+# use datafusion_expr::BinaryExpr;
+
+# #[derive(Debug)]
+# // Define the custom planner
+# struct MyCustomPlanner;
+
+// Implement ExprPlanner for cutom operator logic
+impl ExprPlanner for MyCustomPlanner {
+    fn plan_binary_op(
+        &self,
+        expr: RawBinaryExpr,
+        _schema: &DFSchema,
+    ) -> Result<PlannerResult<RawBinaryExpr>> {
+        match &expr.op {
+            // Map `->` to string concatenation
+            BinaryOperator::Arrow => {
+                // Rewrite `->` as a string concatenation operation
+                // - `left` and `right` are the operands (e.g., 'hello' and 
'world')
+                // - `Operator::StringConcat` tells DataFusion to concatenate 
them
+                Ok(PlannerResult::Planned(Expr::BinaryExpr(BinaryExpr {
+                    left: Box::new(expr.left.clone()),
+                    right: Box::new(expr.right.clone()),
+                    op: Operator::StringConcat,
+                })))
+            }
+            _ => Ok(PlannerResult::Original(expr)),
+        }
+    }
+}
+
+use datafusion::execution::context::SessionContext;
+use datafusion::arrow::util::pretty;
+
+#[tokio::main]
+async fn main() -> Result<()> {
+    let config = SessionConfig::new().set_str("datafusion.sql_parser.dialect", 
"postgres");
+    let mut ctx = SessionContext::new_with_config(config);
+    ctx.register_expr_planner(Arc::new(MyCustomPlanner))?;
+    let results = ctx.sql("select 'foo'->'bar';").await?.collect().await?;
+
+    pretty::print_batches(&results)?;

Review Comment:
   Could you please  change this to use `assert_batches_eq! so the actual 
output is in the test and it is tested in CI



##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.
+
+### Implementing Custom Expression Planning
+
+To extend DataFusion with support for custom operators not natively available, 
you need to:
+
+1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate logical expressions into physical 
execution plans.
+
+   For a detailed documentation please see: [Trait 
ExprPlanner](https://docs.rs/datafusion/latest/datafusion/logical_expr/planner/trait.ExprPlanner.html)

Review Comment:
   ```suggestion
      For detailed documentation please see: [Trait 
ExprPlanner](https://docs.rs/datafusion/latest/datafusion/logical_expr/planner/trait.ExprPlanner.html)
   ```



##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.

Review Comment:
   Here are some wordsmithing suggestions:
   
   ```suggestion
   DataFusion provides native support for common SQL operators by default such 
as `+`, `-`, `||`. However it does not provide support for other operators such 
as `@>`. To override DataFusion's default handling or support unsupported 
operators, developers can extend DataFusion  by implementing custom expression 
planning,  a core feature of DataFusion
   ```



##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.
+
+### Implementing Custom Expression Planning
+
+To extend DataFusion with support for custom operators not natively available, 
you need to:
+
+1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate logical expressions into physical 
execution plans.

Review Comment:
   I think ExprPlanner actually converts the SQL AST to `Expr`s:
   
   ```suggestion
   1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate SQL AST nodes into logical `Expr`.
   ```



##########
docs/source/library-user-guide/adding-udfs.md:
##########
@@ -1160,6 +1160,89 @@ async fn main() -> Result<()> {
 // +---+
 ```
 
+## Custom Expression Planning
+
+DataFusion provides native support for a limited set of SQL operators by 
default. For operators not natively defined, developers can extend DataFusion's 
functionality by implementing custom expression planning. This extensibility is 
a core feature of DataFusion, allowing it to be customized for particular 
workloads and requirements.
+
+### Implementing Custom Expression Planning
+
+To extend DataFusion with support for custom operators not natively available, 
you need to:
+
+1. Implement the `ExprPlanner` trait: This allows you to define custom logic 
for planning expressions that DataFusion doesn't natively recognize. The trait 
provides the necessary interface to translate logical expressions into physical 
execution plans.
+
+   For a detailed documentation please see: [Trait 
ExprPlanner](https://docs.rs/datafusion/latest/datafusion/logical_expr/planner/trait.ExprPlanner.html)
+
+2. Register your custom planner: Integrate your implementation with 
DataFusion's `SessionContext` to ensure your custom planning logic is invoked 
during the query optimization and execution planning phase.
+
+   For a detailed documentation please see: [fn 
register_expr_planner](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html#method.register_expr_planner)
+
+See example below:
+
+```rust
+# use arrow::array::RecordBatch;
+# use std::sync::Arc;
+
+# use datafusion::common::{assert_batches_eq, DFSchema};
+# use datafusion::error::Result;
+# use datafusion::execution::FunctionRegistry;
+# use datafusion::logical_expr::Operator;
+# use datafusion::prelude::*;
+# use datafusion::sql::sqlparser::ast::BinaryOperator;
+# use datafusion_common::ScalarValue;
+# use datafusion_expr::expr::Alias;
+# use datafusion_expr::planner::{ExprPlanner, PlannerResult, RawBinaryExpr};
+# use datafusion_expr::BinaryExpr;
+
+# #[derive(Debug)]
+# // Define the custom planner
+# struct MyCustomPlanner;
+
+// Implement ExprPlanner for cutom operator logic

Review Comment:
   ```suggestion
   // Implement ExprPlanner to add support for the `->` custom operator
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to