alamb commented on code in PR #16580:
URL: https://github.com/apache/datafusion/pull/16580#discussion_r2173716470


##########
datafusion/spark/src/function/string/luhn_check.rs:
##########
@@ -0,0 +1,281 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+use std::{any::Any, sync::Arc};
+
+use arrow::array::{Array, AsArray, BooleanArray};
+use arrow::datatypes::DataType;
+use arrow::datatypes::DataType::Boolean;
+use datafusion_common::types::logical_string;
+use datafusion_common::utils::take_function_args;
+use datafusion_common::{exec_err, Result, ScalarValue};
+use datafusion_expr::{
+    Coercion, ColumnarValue, ScalarFunctionArgs, ScalarUDFImpl, Signature,
+    TypeSignatureClass, Volatility,
+};
+
+/// Spark-compatible `luhn_check` expression
+/// <https://spark.apache.org/docs/latest/api/sql/index.html#luhn_check>
+#[derive(Debug)]
+pub struct SparkLuhnCheck {
+    signature: Signature,
+}
+
+impl Default for SparkLuhnCheck {
+    fn default() -> Self {
+        Self::new()
+    }
+}
+
+impl SparkLuhnCheck {
+    pub fn new() -> Self {
+        Self {
+            signature: Signature::coercible(
+                vec![Coercion::new_exact(TypeSignatureClass::Native(
+                    logical_string(),
+                ))],
+                Volatility::Immutable,
+            ),
+        }
+    }
+}
+
+impl ScalarUDFImpl for SparkLuhnCheck {
+    fn as_any(&self) -> &dyn Any {
+        self
+    }
+
+    fn name(&self) -> &str {
+        "luhn_check"
+    }
+
+    fn signature(&self) -> &Signature {
+        &self.signature
+    }
+
+    fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
+        Ok(Boolean)
+    }
+
+    fn invoke_with_args(&self, args: ScalarFunctionArgs) -> 
Result<ColumnarValue> {
+        let [array] = take_function_args(self.name(), &args.args)?;
+
+        match array {
+            ColumnarValue::Array(array) => match array.data_type() {
+                DataType::Utf8View => {
+                    let str_array = array.as_string_view();
+                    let values = str_array
+                        .iter()
+                        .map(|s| s.map(luhn_check_impl))
+                        .collect::<BooleanArray>();
+                    Ok(ColumnarValue::Array(Arc::new(values)))
+                }
+                DataType::Utf8 => {
+                    let str_array = array.as_string::<i32>();
+                    let values = str_array
+                        .iter()
+                        .map(|s| s.map(luhn_check_impl))
+                        .collect::<BooleanArray>();
+                    Ok(ColumnarValue::Array(Arc::new(values)))
+                }
+                DataType::LargeUtf8 => {
+                    let str_array = array.as_string::<i64>();
+                    let values = str_array
+                        .iter()
+                        .map(|s| s.map(luhn_check_impl))
+                        .collect::<BooleanArray>();
+                    Ok(ColumnarValue::Array(Arc::new(values)))
+                }
+                other => {
+                    exec_err!("Unsupported data type {other:?} for function 
`luhn_check`")
+                }
+            },
+            ColumnarValue::Scalar(ScalarValue::Utf8(Some(s)))
+            | ColumnarValue::Scalar(ScalarValue::LargeUtf8(Some(s)))
+            | ColumnarValue::Scalar(ScalarValue::Utf8View(Some(s))) => Ok(
+                
ColumnarValue::Scalar(ScalarValue::Boolean(Some(luhn_check_impl(s)))),
+            ),
+            ColumnarValue::Scalar(ScalarValue::Utf8(None))
+            | ColumnarValue::Scalar(ScalarValue::LargeUtf8(None))
+            | ColumnarValue::Scalar(ScalarValue::Utf8View(None)) => {
+                Ok(ColumnarValue::Scalar(ScalarValue::Boolean(None)))
+            }
+            other => {
+                exec_err!("Unsupported data type {other:?} for function 
`luhn_check`")
+            }
+        }
+    }
+}
+
+/// Validates a string using the Luhn algorithm.
+/// Returns `true` if the input is a valid Luhn number.
+fn luhn_check_impl(input: &str) -> bool {
+    let mut sum = 0u32;
+    let mut alt = false;
+    let mut digits_processed = 0;
+
+    for b in input.as_bytes().iter().rev() {
+        let digit = match b {
+            b'0'..=b'9' => {
+                digits_processed += 1;
+                b - b'0'
+            }
+            _ => return false,
+        };
+
+        let mut val = digit as u32;
+        if alt {
+            val *= 2;
+            if val > 9 {
+                val -= 9;
+            }
+        }
+        sum += val;
+        alt = !alt;
+    }
+
+    digits_processed > 0 && sum % 10 == 0
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use arrow::array::{ArrayRef, StringArray, StringViewArray};
+    use arrow::datatypes::DataType::Utf8;
+    use arrow::datatypes::Field;
+
+    fn test_luhn_check_array(input: ArrayRef, expected: ArrayRef) -> 
Result<()> {
+        let func = SparkLuhnCheck::new();
+
+        let arg_field = Field::new("a", input.data_type().clone(), 
true).into();
+        let args = ScalarFunctionArgs {
+            number_rows: input.len(),
+            args: vec![ColumnarValue::Array(input)],
+            arg_fields: vec![arg_field],
+            return_field: Field::new("f", Utf8, true).into(),
+        };
+
+        let result = match func.invoke_with_args(args)? {
+            ColumnarValue::Array(result) => result,
+            _ => unreachable!("luhn_check"),
+        };
+
+        assert_eq!(&expected, &result);
+        Ok(())
+    }
+
+    #[test]
+    fn test_array_utf8() -> Result<()> {
+        let input = Arc::new(StringArray::from(vec![

Review Comment:
   I wonder if we can come up with a good pattern to test these functions with 
the different kinds of strings
   
   For example the main datafusion code uses this pattern: 
https://github.com/apache/datafusion/blob/main/datafusion/sqllogictest/test_files/string/README.md
   
   Maybe we could do something similar for string functions in Spark (so we 
dont have to maintain 3 sets of expected outputs)



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to