kosiew commented on issue #1190:
URL: 
https://github.com/apache/datafusion-python/issues/1190#issuecomment-3117895992

   hi @l1t1 
   
   Can you try
   
   ```python
   import pyarrow as pa
   from datafusion import Accumulator, SessionContext, udaf
   
   
   # Define a user-defined aggregation function (UDAF)
   class MyAccumulator(Accumulator):
       """
       Interface of a user-defined accumulation.
       """
   
       def __init__(self) -> None:
           self._sum = pa.scalar(0.0)
   
       def update(self, values: pa.Array) -> None:
           # not nice since pyarrow scalars can't be summed yet. This breaks on 
`None`
           self._sum = pa.scalar(self._sum.as_py() + 
pa.compute.sum(values).as_py())
   
       def merge(self, states: list[pa.Array]) -> None:
           # not nice since pyarrow scalars can't be summed yet. This breaks on 
`None`
           self._sum = pa.scalar(self._sum.as_py() + 
pa.compute.sum(states[0]).as_py())
   
       def state(self) -> list[pa.Scalar]:
           return [self._sum]
       
       def evaluate(self) -> pa.Scalar:
           return self._sum
   
   
   my_udaf = udaf(
       MyAccumulator,
       pa.float64(),
       pa.float64(),
       [pa.float64()],
       "stable",
       # This will be the name of the UDAF in SQL
       # If not specified it will by default the same as accumulator class name
       name="my_accumulator",
   )
   
   # Create a context
   ctx = SessionContext()
   
   # Create a datafusion DataFrame from a Python dictionary
   source_df = ctx.from_pydict({"a": [1, 1, 3], "b": [4, 5, 6]}, name="t")
   # Dataframe:
   # +---+---+
   # | a | b |
   # +---+---+
   # | 1 | 4 |
   # | 1 | 5 |
   # | 3 | 6 |
   # +---+---+
   
   # Register UDF for use in SQL
   ctx.register_udaf(my_udaf)
   
   # Query the DataFrame using SQL
   result_df = ctx.sql(
       "select a, my_accumulator(b) as b_aggregated from t group by a order by 
a"
   )
   # Dataframe:
   # +---+--------------+
   # | a | b_aggregated |
   # +---+--------------+
   # | 1 | 9            |
   # | 3 | 6            |
   # +---+--------------+
   
   result_dict = result_df.to_pydict()
   print("Result:", result_dict)
   assert result_dict["a"] == [1, 3]
   assert result_dict["b_aggregated"] == [9.0, 6.0]
   print("Test passed successfully!")
   ```
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to