alamb commented on code in PR #18152:
URL: https://github.com/apache/datafusion/pull/18152#discussion_r2462721912
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
Review Comment:
a minor nit is why bother with a function here (why not call `filter.filter`
directly)?
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+///
+/// Merges elements by index from a list of [`ArrayData`], creating a new
[`ColumnarValue`] from
+/// those values.
+///
+/// Each element in `indices` is the index of an array in `values` offset by
1. `indices` is
+/// processed sequentially. The first occurrence of index value `n` will be
mapped to the first
+/// value of array `n - 1`. The second occurrence to the second value, and so
on.
+///
+/// The index value `0` is used to indicate null values.
+///
+/// ```text
+/// ┌─────────────────┐ ┌─────────┐
┌─────────────────┐
+/// │ A │ │ 0 │ merge( │
NULL │
+/// ├─────────────────┤ ├─────────┤ [values0, values1],
├─────────────────┤
+/// │ D │ │ 2 │ indices │
B │
+/// └─────────────────┘ ├─────────┤ )
├─────────────────┤
+/// values array 0 │ 2 │ ─────────────────────────▶ │
C │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
A │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
D │
+/// ┌─────────────────┐ ├─────────┤
├─────────────────┤
+/// │ B │ │ 2 │ │
E │
+/// ├─────────────────┤ └─────────┘
└─────────────────┘
+/// │ C │
+/// ├─────────────────┤ indices
+/// │ E │ array
result
+/// └─────────────────┘
+/// values array 1
+/// ```
+fn merge(values: &[ArrayData], indices: &[usize]) -> Result<ArrayRef> {
+ let data_refs = values.iter().collect();
+ let mut mutable = MutableArrayData::new(data_refs, true, indices.len());
+
+ // This loop extends the mutable array by taking slices from the partial
results.
+ //
+ // take_offsets keeps track of how many values have been taken from each
array.
+ let mut take_offsets = vec![0; values.len() + 1];
+ let mut start_row_ix = 0;
+ loop {
+ let array_ix = indices[start_row_ix];
+
+ // Determine the length of the slice to take.
+ let mut end_row_ix = start_row_ix + 1;
+ while end_row_ix < indices.len() && indices[end_row_ix] == array_ix {
+ end_row_ix += 1;
+ }
+ let slice_length = end_row_ix - start_row_ix;
+
+ // Extend mutable with either nulls or with values from the array.
+ let start_offset = take_offsets[array_ix];
+ let end_offset = start_offset + slice_length;
+ if array_ix == 0 {
+ mutable.extend_nulls(slice_length);
+ } else {
+ mutable.extend(array_ix - 1, start_offset, end_offset);
+ }
+
+ if end_row_ix == indices.len() {
+ break;
+ } else {
+ // Update the take_offsets array.
+ take_offsets[array_ix] = end_offset;
+ // Set the start_row_ix for the next slice.
+ start_row_ix = end_row_ix;
+ }
+ }
+
+ Ok(make_array(mutable.freeze()))
+}
+
+/// A builder for constructing result arrays for CASE expressions.
+///
+/// Rather than building a monolithic array containing all results, it
maintains a set of
+/// partial result arrays and a mapping that indicates for each row which
partial array
+/// contains the result value for that row.
+///
+/// On finish(), the builder will merge all partial results into a single
array if necessary.
+/// If all rows evaluated to the same array, that array can be returned
directly without
+/// any merging overhead.
+struct ResultBuilder {
+ data_type: DataType,
+ // A Vec of partial results that should be merged.
`partial_result_indices` contains
+ // indexes into this vec.
+ partial_results: Vec<ArrayData>,
+ // Indicates per result row from which array in `partial_results` a value
should be taken.
+ // The indexes in this array are offset by +1. The special value 0
indicates null values.
+ partial_result_indices: Vec<usize>,
+ // An optional result that is the covering result for all rows.
+ // This is used as an optimisation to avoid the cost of merging when all
rows
+ // evaluate to the same case branch.
+ covering_result: Option<ColumnarValue>,
+}
+
+impl ResultBuilder {
+ /// Creates a new ResultBuilder that will produce arrays of the given data
type.
+ ///
+ /// The capacity parameter indicates the number of rows in the result.
+ fn new(data_type: &DataType, capacity: usize) -> Self {
+ Self {
+ data_type: data_type.clone(),
+ partial_result_indices: vec![0; capacity],
+ partial_results: vec![],
+ covering_result: None,
+ }
+ }
+
+ /// Adds a result for one branch of the case expression.
+ ///
+ /// `row_indices` should be a [UInt32Array] containing [RecordBatch]
relative row indices
+ /// for which `value` contains result values.
+ ///
+ /// If `value` is a scalar, the scalar value will be used as the value for
each row in `row_indices`.
+ ///
+ /// If `value` is an array, the values from the array and the indices from
`row_indices` will be
+ /// processed pairwise. The lengths of `value` and `row_indices` must
match.
+ ///
+ /// The diagram below shows a situation where a when expression matched
rows 1 and 4 of the
+ /// record batch. The then expression produced the value array `[A, D]`.
+ /// After adding this result, the result array will have been added to
`partial_results` and
+ /// `partial_indices` will have been updated at indexes 1 and 4.
+ ///
+ /// ```text
+ /// ┌─────────┐ ┌─────────┐┌───────────┐
┌─────────┐┌───────────┐
+ /// │ A │ │ 0 ││ │ │
0 ││┌─────────┐│
+ /// ├─────────┤ ├─────────┤│ │
├─────────┤││ A ││
+ /// │ D │ │ 0 ││ │ │
1 ││├─────────┤│
+ /// └─────────┘ ├─────────┤│ │ add_branch_result(
├─────────┤││ D ││
+ /// value │ 0 ││ │ row indices, │
0 ││└─────────┘│
+ /// ├─────────┤│ │ value
├─────────┤│ │
+ /// │ 0 ││ │ ) │
0 ││ │
+ /// ┌─────────┐ ├─────────┤│ │ ─────────────────────────▶
├─────────┤│ │
+ /// │ 1 │ │ 0 ││ │ │
1 ││ │
+ /// ├─────────┤ ├─────────┤│ │
├─────────┤│ │
+ /// │ 4 │ │ 0 ││ │ │
0 ││ │
+ /// └─────────┘ └─────────┘└───────────┘
└─────────┘└───────────┘
+ /// row indices
+ /// partial partial
partial partial
+ /// indices results
indices results
+ /// ```
+ fn add_branch_result(
+ &mut self,
+ row_indices: &ArrayRef,
+ value: ColumnarValue,
+ ) -> Result<()> {
+ match value {
+ ColumnarValue::Array(a) => {
+ assert_eq!(a.len(), row_indices.len());
+ if row_indices.len() == self.partial_result_indices.len() {
Review Comment:
I expected this also to have to check the values in row_indices to make sure
all rows were covered. Does this assume that there are no duplicates in
row_indices?
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+///
Review Comment:
I recommend also adding a comment here explaining that this is a specialized
version of the upstream `interleave` kernel just for case expressions and that
we aren't using `interleave` because this specialized version is faster
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+///
+/// Merges elements by index from a list of [`ArrayData`], creating a new
[`ColumnarValue`] from
+/// those values.
+///
+/// Each element in `indices` is the index of an array in `values` offset by
1. `indices` is
+/// processed sequentially. The first occurrence of index value `n` will be
mapped to the first
+/// value of array `n - 1`. The second occurrence to the second value, and so
on.
+///
+/// The index value `0` is used to indicate null values.
+///
+/// ```text
+/// ┌─────────────────┐ ┌─────────┐
┌─────────────────┐
+/// │ A │ │ 0 │ merge( │
NULL │
+/// ├─────────────────┤ ├─────────┤ [values0, values1],
├─────────────────┤
+/// │ D │ │ 2 │ indices │
B │
+/// └─────────────────┘ ├─────────┤ )
├─────────────────┤
+/// values array 0 │ 2 │ ─────────────────────────▶ │
C │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
A │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
D │
+/// ┌─────────────────┐ ├─────────┤
├─────────────────┤
+/// │ B │ │ 2 │ │
E │
+/// ├─────────────────┤ └─────────┘
└─────────────────┘
+/// │ C │
+/// ├─────────────────┤ indices
+/// │ E │ array
result
+/// └─────────────────┘
+/// values array 1
+/// ```
+fn merge(values: &[ArrayData], indices: &[usize]) -> Result<ArrayRef> {
Review Comment:
This seems very similar to the zip kernel:
https://docs.rs/arrow/latest/arrow/compute/kernels/zip/fn.zip.html
@rluvaton is also in the process of optimizing that kernel:
- https://github.com/apache/arrow-rs/pull/8653
Thus, if this code was to use zip it could take advantage of those
optimizations when they land
Edit: I was confused by the example that only shows values 0 and 1 -- I see
now this works for an arbitrary number of input arrays (more than 2)
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -196,82 +467,135 @@ impl CaseExpr {
/// END
fn case_when_with_expr(&self, batch: &RecordBatch) ->
Result<ColumnarValue> {
let return_type = self.data_type(&batch.schema())?;
- let expr = self.expr.as_ref().unwrap();
- let base_value = expr.evaluate(batch)?;
- let base_value = base_value.into_array(batch.num_rows())?;
+ let mut result_builder = ResultBuilder::new(&return_type,
batch.num_rows());
+
+ // `remainder_rows` contains the indices of the rows that need to be
evaluated
+ let mut remainder_rows: ArrayRef =
+ Arc::new(UInt32Array::from_iter_values(0..batch.num_rows() as
u32));
+ // `remainder_batch` contains the rows themselves that need to be
evaluated
+ let mut remainder_batch = Cow::Borrowed(batch);
+
+ // evaluate the base expression
+ let mut base_value = self
+ .expr
+ .as_ref()
+ .unwrap()
+ .evaluate(batch)?
+ .into_array(batch.num_rows())?;
Review Comment:
we can probably make this even faster by avoiding this `into_array` call and
handling the ColumnarValue specially
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+///
+/// Merges elements by index from a list of [`ArrayData`], creating a new
[`ColumnarValue`] from
+/// those values.
+///
+/// Each element in `indices` is the index of an array in `values` offset by
1. `indices` is
+/// processed sequentially. The first occurrence of index value `n` will be
mapped to the first
+/// value of array `n - 1`. The second occurrence to the second value, and so
on.
+///
+/// The index value `0` is used to indicate null values.
Review Comment:
If you used `USIZE::MAX` for the null value it might make the code easier to
read as there wouldn't be as many special cases
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,181 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray, optimize: bool) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ if optimize {
+ filter_builder = filter_builder.optimize();
+ }
+ filter_builder.build()
+}
+
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+struct ResultBuilder {
+ data_type: DataType,
+ // A Vec of partial results that should be merged.
`partial_result_indices` contains
+ // indexes into this vec.
+ partial_results: Vec<ArrayData>,
+ // Indicates per result row from which array in `partial_results` a value
should be taken.
+ // The indexes in this array are offset by +1. The special value 0
indicates null values.
+ partial_result_indices: Vec<usize>,
+ // An optional result that is the covering result for all rows.
+ // This is used as an optimisation to avoid the cost of merging when all
rows
+ // evaluate to the same case branch.
+ covering_result: Option<ColumnarValue>,
Review Comment:
"single value" maybe?
Another way to make it clearer might be to use an enum like
```rust
enum ResultState {
/// A subset of the result should be returned
Partial {
// A Vec of partial results that should be merged.
`partial_result_indices` contains
// indexes into this vec.
results: Vec<ArrayData>,
// Indicates per result row from which array in `partial_results` a
value should be taken.
// The indexes in this array are offset by +1. The special value 0
indicates null values.
indices: Vec<usize>
},
// An optional result that is the covering result for all rows.
// This is used as an optimisation to avoid the cost of merging when all
rows
// evaluate to the same case branch.
Covering(ColumnarValue)
}
struct ResultBuilder {
...
/// The inprogress result
result: ResultState,
...
}
```
That way the compiler can verify the output
##########
datafusion/physical-expr/src/expressions/case.rs:
##########
@@ -122,6 +123,276 @@ fn is_cheap_and_infallible(expr: &Arc<dyn PhysicalExpr>)
-> bool {
expr.as_any().is::<Column>()
}
+/// Creates a [FilterPredicate] from a boolean array.
+fn create_filter(predicate: &BooleanArray) -> FilterPredicate {
+ let mut filter_builder = FilterBuilder::new(predicate);
+ // Always optimize the filter since we use them multiple times.
+ filter_builder = filter_builder.optimize();
+ filter_builder.build()
+}
+
+// This should be removed when https://github.com/apache/arrow-rs/pull/8693
+// is merged and becomes available.
+fn filter_record_batch(
+ record_batch: &RecordBatch,
+ filter: &FilterPredicate,
+) -> std::result::Result<RecordBatch, ArrowError> {
+ let filtered_columns = record_batch
+ .columns()
+ .iter()
+ .map(|a| filter_array(a, filter))
+ .collect::<std::result::Result<Vec<_>, _>>()?;
+ // SAFETY: since we start from a valid RecordBatch, there's no need to
revalidate the schema
+ // since the set of columns has not changed.
+ // The input column arrays all had the same length (since they're coming
from a valid RecordBatch)
+ // and the filtering them with the same filter will produces a new set of
arrays with identical
+ // lengths.
+ unsafe {
+ Ok(RecordBatch::new_unchecked(
+ record_batch.schema(),
+ filtered_columns,
+ filter.count(),
+ ))
+ }
+}
+
+#[inline(always)]
+fn filter_array(
+ array: &dyn Array,
+ filter: &FilterPredicate,
+) -> std::result::Result<ArrayRef, ArrowError> {
+ filter.filter(array)
+}
+
+///
+/// Merges elements by index from a list of [`ArrayData`], creating a new
[`ColumnarValue`] from
+/// those values.
+///
+/// Each element in `indices` is the index of an array in `values` offset by
1. `indices` is
+/// processed sequentially. The first occurrence of index value `n` will be
mapped to the first
+/// value of array `n - 1`. The second occurrence to the second value, and so
on.
+///
+/// The index value `0` is used to indicate null values.
+///
+/// ```text
+/// ┌─────────────────┐ ┌─────────┐
┌─────────────────┐
+/// │ A │ │ 0 │ merge( │
NULL │
+/// ├─────────────────┤ ├─────────┤ [values0, values1],
├─────────────────┤
+/// │ D │ │ 2 │ indices │
B │
+/// └─────────────────┘ ├─────────┤ )
├─────────────────┤
+/// values array 0 │ 2 │ ─────────────────────────▶ │
C │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
A │
+/// ├─────────┤
├─────────────────┤
+/// │ 1 │ │
D │
+/// ┌─────────────────┐ ├─────────┤
├─────────────────┤
+/// │ B │ │ 2 │ │
E │
+/// ├─────────────────┤ └─────────┘
└─────────────────┘
+/// │ C │
+/// ├─────────────────┤ indices
+/// │ E │ array
result
+/// └─────────────────┘
+/// values array 1
+/// ```
+fn merge(values: &[ArrayData], indices: &[usize]) -> Result<ArrayRef> {
+ let data_refs = values.iter().collect();
+ let mut mutable = MutableArrayData::new(data_refs, true, indices.len());
+
+ // This loop extends the mutable array by taking slices from the partial
results.
+ //
+ // take_offsets keeps track of how many values have been taken from each
array.
+ let mut take_offsets = vec![0; values.len() + 1];
+ let mut start_row_ix = 0;
+ loop {
+ let array_ix = indices[start_row_ix];
+
+ // Determine the length of the slice to take.
+ let mut end_row_ix = start_row_ix + 1;
+ while end_row_ix < indices.len() && indices[end_row_ix] == array_ix {
+ end_row_ix += 1;
+ }
+ let slice_length = end_row_ix - start_row_ix;
+
+ // Extend mutable with either nulls or with values from the array.
+ let start_offset = take_offsets[array_ix];
+ let end_offset = start_offset + slice_length;
+ if array_ix == 0 {
+ mutable.extend_nulls(slice_length);
+ } else {
+ mutable.extend(array_ix - 1, start_offset, end_offset);
+ }
+
+ if end_row_ix == indices.len() {
+ break;
+ } else {
+ // Update the take_offsets array.
+ take_offsets[array_ix] = end_offset;
+ // Set the start_row_ix for the next slice.
+ start_row_ix = end_row_ix;
+ }
+ }
+
+ Ok(make_array(mutable.freeze()))
+}
+
+/// A builder for constructing result arrays for CASE expressions.
+///
+/// Rather than building a monolithic array containing all results, it
maintains a set of
+/// partial result arrays and a mapping that indicates for each row which
partial array
+/// contains the result value for that row.
+///
+/// On finish(), the builder will merge all partial results into a single
array if necessary.
+/// If all rows evaluated to the same array, that array can be returned
directly without
+/// any merging overhead.
+struct ResultBuilder {
+ data_type: DataType,
+ // A Vec of partial results that should be merged.
`partial_result_indices` contains
+ // indexes into this vec.
+ partial_results: Vec<ArrayData>,
+ // Indicates per result row from which array in `partial_results` a value
should be taken.
+ // The indexes in this array are offset by +1. The special value 0
indicates null values.
+ partial_result_indices: Vec<usize>,
+ // An optional result that is the covering result for all rows.
+ // This is used as an optimisation to avoid the cost of merging when all
rows
+ // evaluate to the same case branch.
+ covering_result: Option<ColumnarValue>,
+}
+
+impl ResultBuilder {
+ /// Creates a new ResultBuilder that will produce arrays of the given data
type.
+ ///
+ /// The capacity parameter indicates the number of rows in the result.
+ fn new(data_type: &DataType, capacity: usize) -> Self {
+ Self {
+ data_type: data_type.clone(),
+ partial_result_indices: vec![0; capacity],
+ partial_results: vec![],
+ covering_result: None,
+ }
+ }
+
+ /// Adds a result for one branch of the case expression.
+ ///
+ /// `row_indices` should be a [UInt32Array] containing [RecordBatch]
relative row indices
+ /// for which `value` contains result values.
+ ///
+ /// If `value` is a scalar, the scalar value will be used as the value for
each row in `row_indices`.
+ ///
+ /// If `value` is an array, the values from the array and the indices from
`row_indices` will be
+ /// processed pairwise. The lengths of `value` and `row_indices` must
match.
+ ///
+ /// The diagram below shows a situation where a when expression matched
rows 1 and 4 of the
+ /// record batch. The then expression produced the value array `[A, D]`.
+ /// After adding this result, the result array will have been added to
`partial_results` and
+ /// `partial_indices` will have been updated at indexes 1 and 4.
+ ///
+ /// ```text
+ /// ┌─────────┐ ┌─────────┐┌───────────┐
┌─────────┐┌───────────┐
+ /// │ A │ │ 0 ││ │ │
0 ││┌─────────┐│
+ /// ├─────────┤ ├─────────┤│ │
├─────────┤││ A ││
+ /// │ D │ │ 0 ││ │ │
1 ││├─────────┤│
+ /// └─────────┘ ├─────────┤│ │ add_branch_result(
├─────────┤││ D ││
+ /// value │ 0 ││ │ row indices, │
0 ││└─────────┘│
+ /// ├─────────┤│ │ value
├─────────┤│ │
+ /// │ 0 ││ │ ) │
0 ││ │
+ /// ┌─────────┐ ├─────────┤│ │ ─────────────────────────▶
├─────────┤│ │
+ /// │ 1 │ │ 0 ││ │ │
1 ││ │
+ /// ├─────────┤ ├─────────┤│ │
├─────────┤│ │
+ /// │ 4 │ │ 0 ││ │ │
0 ││ │
+ /// └─────────┘ └─────────┘└───────────┘
└─────────┘└───────────┘
+ /// row indices
+ /// partial partial
partial partial
+ /// indices results
indices results
+ /// ```
+ fn add_branch_result(
+ &mut self,
+ row_indices: &ArrayRef,
+ value: ColumnarValue,
+ ) -> Result<()> {
+ match value {
+ ColumnarValue::Array(a) => {
+ assert_eq!(a.len(), row_indices.len());
+ if row_indices.len() == self.partial_result_indices.len() {
+ self.set_covering_result(ColumnarValue::Array(a));
+ } else {
+ self.add_partial_result(row_indices, a.to_data());
+ }
+ }
+ ColumnarValue::Scalar(s) => {
+ if row_indices.len() == self.partial_result_indices.len() {
+ self.set_covering_result(ColumnarValue::Scalar(s));
+ } else {
+ self.add_partial_result(
+ row_indices,
+ s.to_array_of_size(row_indices.len())?.to_data(),
+ );
+ }
+ }
+ }
+ Ok(())
+ }
+
+ /// Adds a partial result array.
+ ///
+ /// This method adds the given array data as a partial result and updates
the index mapping
+ /// to indicate that the specified rows should take their values from this
array.
+ /// The partial results will be merged into a single array when finish()
is called.
+ fn add_partial_result(&mut self, row_indices: &ArrayRef, row_values:
ArrayData) {
+ // Covering results and partial results are mutually exclusive.
+ // We can assert this since the case evaluation methods are written to
only evaluate
+ // each row of the record batch once.
+ assert!(self.covering_result.is_none());
+
+ self.partial_results.push(row_values);
+ let array_index = self.partial_results.len();
+
+ for row_ix in row_indices.as_primitive::<UInt32Type>().values().iter()
{
+ self.partial_result_indices[*row_ix as usize] = array_index;
+ }
+ }
+
+ /// Sets a covering result that applies to all rows.
+ ///
+ /// This is an optimization for cases where all rows evaluate to the same
result.
+ /// When a covering result is set, the builder will return it directly
from finish()
+ /// without any merging overhead.
+ fn set_covering_result(&mut self, value: ColumnarValue) {
+ // Covering results and partial results are mutually exclusive.
+ // We can assert this since the case evaluation methods are written to
only evaluate
+ // each row of the record batch once.
+ assert!(self.partial_results.is_empty());
Review Comment:
if you used the enum above you could avoid this assert (the compiler would
ensure it for you)
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]