andygrove opened a new issue, #3098:
URL: https://github.com/apache/datafusion-comet/issues/3098

   ## What is the problem the feature request solves?
   
   > **Note:** This issue was generated with AI assistance. The specification 
details have been extracted from Spark documentation and may need verification.
   
   Comet does not currently support the Spark `make_dt_interval` function, 
causing queries using this function to fall back to Spark's JVM execution 
instead of running natively on DataFusion.
   
   The `MakeDTInterval` expression creates a day-time interval value from 
separate day, hour, minute, and second components. This expression is used to 
construct `DayTimeIntervalType` values programmatically by combining individual 
time unit values into a single interval representation.
   
   Supporting this expression would allow more Spark workloads to benefit from 
Comet's native acceleration.
   
   ## Describe the potential solution
   
   ### Spark Specification
   
   **Syntax:**
   ```sql
   make_dt_interval(days, hours, minutes, seconds)
   make_dt_interval(days, hours, minutes)
   make_dt_interval(days, hours)
   make_dt_interval(days)
   make_dt_interval()
   ```
   
   **Arguments:**
   | Argument | Type | Description |
   |----------|------|-------------|
   | `days` | IntegerType | Number of days in the interval (optional, defaults 
to 0) |
   | `hours` | IntegerType | Number of hours in the interval (optional, 
defaults to 0) |
   | `minutes` | IntegerType | Number of minutes in the interval (optional, 
defaults to 0) |
   | `seconds` | DecimalType(MAX_LONG_DIGITS, 6) | Number of seconds including 
microsecond precision (optional, defaults to 0) |
   
   **Return Type:** Returns a `DayTimeIntervalType()` representing the 
constructed interval.
   
   **Supported Data Types:**
   - **days**: Integer values
   - **hours**: Integer values  
   - **minutes**: Integer values
   - **seconds**: Decimal values with up to 6 decimal places for microsecond 
precision
   
   **Edge Cases:**
   - **Null handling**: Expression is null-intolerant (`nullIntolerant = 
true`), meaning if any input is null, the result is null
   - **Default values**: Missing parameters default to 0 (literal values)
   - **Precision handling**: Seconds parameter uses DecimalType with 6 decimal 
places to preserve microsecond precision
   - **Overflow behavior**: Delegates to `IntervalUtils.makeDayTimeInterval()` 
for overflow validation and error handling
   - **Error context**: Includes query context information for meaningful error 
messages when interval construction fails
   
   **Examples:**
   ```sql
   -- Create a 5-day, 3-hour, 30-minute, 45.5-second interval
   SELECT make_dt_interval(5, 3, 30, 45.5);
   
   -- Create a 2-day interval
   SELECT make_dt_interval(2);
   
   -- Create a 1-day, 12-hour interval  
   SELECT make_dt_interval(1, 12);
   
   -- Create an empty interval
   SELECT make_dt_interval();
   ```
   
   ```scala
   // DataFrame API usage
   import org.apache.spark.sql.functions._
   
   // Create interval from literal values
   df.select(expr("make_dt_interval(5, 3, 30, 45.5)"))
   
   // Create interval from column values
   df.select(expr("make_dt_interval(day_col, hour_col, min_col, sec_col)"))
   ```
   
   ### Implementation Approach
   
   See the [Comet guide on adding new 
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
 for detailed instructions.
   
   1. **Scala Serde**: Add expression handler in 
`spark/src/main/scala/org/apache/comet/serde/`
   2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
   3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if 
needed
   4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has 
built-in support first)
   
   
   ## Additional context
   
   **Difficulty:** Large
   **Spark Expression Class:** 
`org.apache.spark.sql.catalyst.expressions.MakeDTInterval`
   
   **Related:**
   - `MakeYMInterval` - Creates year-month intervals
   - `IntervalUtils` - Utility class for interval operations
   - `DayTimeIntervalType` - The data type returned by this expression
   - `Extract` - Extracts components from interval values
   
   ---
   *This issue was auto-generated from Spark reference documentation.*
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to