Dear Achille,
As is, your script is already meshing the hole/inclusion volumes. Do you wish to produce two mesh files, one with the "cheese" mesh and the other with the inclusion mesh ? If that is the case, you can comment out the line Physical Volume (t) = thehole ; run the model once, save the mesh, this will give you the "cheese" mesh. Then uncomment that line and comment out Physical Volume (10) = 100 ; and you should get the inclusions only. Faithfully yours, Guillaume DILASSER Doctorant SACM / LEAS CEA - Centre de Saclay - Bât.123 - PC 319c 91191 Gif sur Yvette Cedex - France - [email protected]<mailto:[email protected]> -----Message d'origine----- De : gmsh [mailto:[email protected]] De la part de Achille Pluplu Envoyé : jeudi 30 mars 2017 18:44 À : [email protected] Objet : [Gmsh] Swiss cheese with filled cavities Dear all, I'm quite new to GMSH so, please, be patient. I need to create a 3D mesh of a cube that include some inclusions (spheres) of a different material. I could find the following script that generates a cube with 5 cavities, but how can I mesh also the inclusions? In particular I need two well separated meshes, one for the "cheese" the other for the inclusions Thanks a lot for helping! Function CheeseHole // In the following commands we use the reserved variable name // `newp', which automatically selects a new point number. This // number is chosen as the highest current point number, plus // one. (Note that, analogously to `newp', the variables `newc', // `news', `newv' and `newreg' select the highest number amongst // currently defined curves, surfaces, volumes and `any entities // other than points', respectively.) p1 = newp; Point(p1) = {x, y, z, lcar3} ; p2 = newp; Point(p2) = {x+r,y, z, lcar3} ; p3 = newp; Point(p3) = {x, y+r,z, lcar3} ; p4 = newp; Point(p4) = {x, y, z+r,lcar3} ; p5 = newp; Point(p5) = {x-r,y, z, lcar3} ; p6 = newp; Point(p6) = {x, y-r,z, lcar3} ; p7 = newp; Point(p7) = {x, y, z-r,lcar3} ; c1 = newreg; Circle(c1) = {p2,p1,p7}; c2 = newreg; Circle(c2) = {p7,p1,p5}; c3 = newreg; Circle(c3) = {p5,p1,p4}; c4 = newreg; Circle(c4) = {p4,p1,p2}; c5 = newreg; Circle(c5) = {p2,p1,p3}; c6 = newreg; Circle(c6) = {p3,p1,p5}; c7 = newreg; Circle(c7) = {p5,p1,p6}; c8 = newreg; Circle(c8) = {p6,p1,p2}; c9 = newreg; Circle(c9) = {p7,p1,p3}; c10 = newreg; Circle(c10) = {p3,p1,p4}; c11 = newreg; Circle(c11) = {p4,p1,p6}; c12 = newreg; Circle(c12) = {p6,p1,p7}; // We need non-plane surfaces to define the spherical holes. Here we // use ruled surfaces, which can have 3 or 4 sides: l1 = newreg; Line Loop(l1) = {c5,c10,c4}; Ruled Surface(newreg) = {l1}; l2 = newreg; Line Loop(l2) = {c9,-c5,c1}; Ruled Surface(newreg) = {l2}; l3 = newreg; Line Loop(l3) = {c12,-c8,-c1}; Ruled Surface(newreg) = {l3}; l4 = newreg; Line Loop(l4) = {c8,-c4,c11}; Ruled Surface(newreg) = {l4}; l5 = newreg; Line Loop(l5) = {-c10,c6,c3}; Ruled Surface(newreg) = {l5}; l6 = newreg; Line Loop(l6) = {-c11,-c3,c7}; Ruled Surface(newreg) = {l6}; l7 = newreg; Line Loop(l7) = {-c2,-c7,-c12};Ruled Surface(newreg) = {l7}; l8 = newreg; Line Loop(l8) = {-c6,-c9,c2}; Ruled Surface(newreg) = {l8}; // We then store the surface loops identification numbers in a list // for later reference (we will need these to define the final // volume): theloops[t] = newreg ; Surface Loop(theloops[t]) = {l8+1,l5+1,l1+1,l2+1,l3+1,l7+1,l6+1,l4+1}; thehole = newreg ; Volume(thehole) = theloops[t] ; Return lcar3 = .055; hloc = 0.1; Point(1) = {0, 0, 0, hloc}; Point(2) = {1, 0, 0, hloc}; Point(3) = {1, 1, 0, hloc}; Point(4) = {0, 1, 0, hloc}; Point(5) = {0, 0, 1, hloc}; Point(6) = {1, 0, 1, hloc}; Point(7) = {1, 1, 1, hloc}; Point(8) = {0, 1, 1, hloc}; Line(1) = {1,2}; Line(2) = {2,3}; Line(3) = {3,4}; Line(4) = {4,1}; Line(5) = {5,6}; Line(6) = {6,7}; Line(7) = {7,8}; Line(8) = {8,5}; Line(9) = {1,5}; Line(10) = {2,6}; Line(11) = {3,7}; Line(12) = {4,8}; // bottom Line Loop(21) = {-1,-4,-3,-2}; Plane Surface(31) = {21} ; // top Line Loop(22) = {5,6,7,8}; Plane Surface(32) = {22} ; // left Line Loop(23) = {1,10,-5,-9}; Plane Surface(33) = {23} ; // right Line Loop(24) = {12,-7,-11,3}; Plane Surface(34) = {24} ; // front Line Loop(25) = {2,11,-6,-10}; Plane Surface(35) = {25} ; // back Line Loop(26) = {9,-8,-12,4}; Plane Surface(36) = {26} ; // We can use a `For' loop to generate five holes in the cube: x = 0 ; y = 0.75 ; z = 0 ; r = 0.09 ; For t In {1:5} x += 0.166 ; z += 0.166 ; // We call the `CheeseHole' function: Call CheeseHole ; // We define a physical volume for each hole: Physical Volume (t) = thehole ; // We also print some variables on the terminal (note that, since // all variables are treated internally as floating point numbers, // the format string should only contain valid floating point format // specifiers like `%g', `%f', '%e', etc.): Printf("Hole %g (center = {%g,%g,%g}, radius = %g) has number %g!", t, x, y, z, r, thehole) ; EndFor theloops[0] = newreg ; Surface Loop(theloops[0]) = {31,32,33,34,35,36}; Volume(100) = {theloops[]}; Physical Volume (10) = 100 ; _______________________________________________ gmsh mailing list [email protected]<mailto:[email protected]> http://onelab.info/mailman/listinfo/gmsh
_______________________________________________ gmsh mailing list [email protected] http://onelab.info/mailman/listinfo/gmsh
