I think this is false. Here's a proof of the opposite, with the type of f instantiated to a num set generator:
val thm = Q.prove( `¬( ∀(f:num->num->bool) a sp. (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ∧ (∀n. f n ⊆ sp) ∧ (BIGUNION (IMAGE f 𝕌(:num)) = sp) ∧ (a ⊆ sp) ⇒ ∃x. a ⊆ f x)`, rw[] \\ qexists_tac`count` \\ qexists_tac`UNIV` \\ rw[SUBSET_DEF, PULL_EXISTS] >- metis_tac[] >- ( rw[Once EXTENSION] \\ qexists_tac`count (SUC x)` \\ rw[] ) >- ( rw[EXTENSION] \\ qexists_tac`SUC x` \\ rw[] )); On Tue, 18 Sep 2018 at 00:01, Chun Tian (binghe) <binghe.l...@gmail.com> wrote: > sorry, I also have this necessary assumption: > > 5. BIGUNION (IMAGE f 𝕌(:num)) = sp > > > Il giorno 18 set 2018, alle ore 01:00, Chun Tian (binghe) < > binghe.l...@gmail.com> ha scritto: > > > > Hi, > > > > I ran into the following goal in the proof of a big theorem: > > > > ∃x. a ⊆ f x > > ------------------------------------ > > 3. f 0 = ∅ > > 4. ∀n. f n ⊆ f (SUC n) > > 20. ∀n. f n ⊆ sp > > 21. a ⊆ sp > > > > I have an increasing sequence of sets (f n) from empty to the whole > space (sp), and I have a single set “a” (⊆ sp). It looks *obvious* that, I > can always choose a big enough index x such that (f x) will contain “a”. > But how can I make this argument formal? > > > > thanks, > > > > Chun > > > > _______________________________________________ > hol-info mailing list > hol-info@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/hol-info >
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info