> Il giorno 18 set 2018, alle ore 11:15, Chun Tian (binghe) 
> <binghe.l...@gmail.com> ha scritto:
> 
> Hi Thomas,
> 
> yes, you’re totally right.   My original problem cannot be resolved just in 
> scope of set theory. I’m trying to prove the uniqueness of measure:
> 
> [UNIQUENESS_OF_MEASURE]
>         ∀sp sts f u v.
>             sp ∈ sts ∧ subset_class sp sts ∧
>             (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ∧ f ∈ (𝕌(:num) -> sts) ∧
>             (∀n. f n ⊆ f (SUC n)) ∧ (sp = BIGUNION (IMAGE f 𝕌(:num))) ∧
>             measure_space (sp,subsets (sigma sp sts),u) ∧
>             measure_space (sp,subsets (sigma sp sts),v) ∧
>             (∀n. u (f n) < PosInf) ∧ (∀s. s ∈ sts ⇒ (u s = v s)) ⇒
>             ∀s. s ∈ subsets (sigma sp sts) ⇒ (u s = v s)
> 
> And I was approaching a measure (u a) using the sup of an image:
> 
> u a = sup (IMAGE (u ∘ (λi. f i ∩ a)) 𝕌(:num))
> 
> in which (u :’a set -> extreal) is a measure function, f is the increasing 
> sequence that I mentioned before. Now I believe the correct way to reduce 
> “sup” is to use the following non-trivial monotone convergence theorem 
> already in HOL’s measureTheory:
> 
> [MONOTONE_CONVERGENCE]
>    ⊢ ∀m s f.
>          measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
>          (∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
>          (sup (IMAGE (measure m ∘ f) 𝕌(:num)) = measure m s)
> 
> Above theorem does require that (f 0 = EMPTY), as I expected. Now I have 
> confidence to finish the whole proof.

*does NOT require that (f 0 = EMPTY).

> 
> —Chun
> 
>> Il giorno 18 set 2018, alle ore 10:36, Thomas Tuerk <tho...@tuerk-brechen.de 
>> <mailto:tho...@tuerk-brechen.de>> ha scritto:
>> 
>> Hi Chun,
>> 
>> no, it still does not hold. The problem is that case that "a" might be 
>> infinite and while there is for every element 'e' of 'a' an 'n' with 'e IN f 
>> n' you need arbitrary large ones.
>> 
>> A tiny modification of Ramana's counterexample is
>> 
>> f x := count x
>> sp := UNIV
>> a := { n | even n }
>> Cheers
>> 
>> Thomas
>> 
>> On 18.09.2018 10:25, Chun Tian (binghe) wrote:
>>> Hi Ramana,
>>> 
>>> thanks for your help. Sorry, I realized that the case “a = sp” can be 
>>> eliminated from other assumptions, thus I actually have another constraint 
>>> “a ≠ sp” in my original goals:
>>> 
>>>    ∃x. a ⊆ f x
>>>    ------------------------------------
>>>      4.  f 0 = ∅
>>>      5.  ∀i j. i ≤ j ⇒ f i ⊆ f j
>>>      6.  BIGUNION (IMAGE f 𝕌(:num)) = sp
>>>     21.  a ≠ sp
>>>     23.  ∀n. f n ⊆ sp
>>>     24.  a ⊆ sp
>>> 
>>> in this case your opposite proof doesn’t work any more. Also, I replaced 
>>> the monotonicity of f into another form, I don’t know which one is easier 
>>> to use. The assumption "f 0 = ∅” should be optional, I guess.
>>> 
>>> Now this should be a true statement, right?
>>> 
>>> —Chun
>>> 
>>>> Il giorno 18 set 2018, alle ore 01:26, Ramana Kumar <ram...@kumar.id.au 
>>>> <mailto:ram...@kumar.id.au>> ha scritto:
>>>> 
>>>> I think this is false. Here's a proof of the opposite, with the type of f 
>>>> instantiated to a num set generator:
>>>> 
>>>> val thm = Q.prove(
>>>> `¬(
>>>>   ∀(f:num->num->bool) a sp.
>>>>   (f 0 = ∅) ∧
>>>>   (∀n. f n ⊆ f (SUC n)) ∧
>>>>   (∀n. f n ⊆ sp) ∧
>>>>   (BIGUNION (IMAGE f 𝕌(:num)) = sp) ∧
>>>>   (a ⊆ sp) ⇒
>>>>      ∃x. a ⊆ f x)`,
>>>>   rw[]
>>>>   \\ qexists_tac`count`
>>>>   \\ qexists_tac`UNIV`
>>>>   \\ rw[SUBSET_DEF, PULL_EXISTS]
>>>>   >- metis_tac[]
>>>>   >- (
>>>>     rw[Once EXTENSION]
>>>>     \\ qexists_tac`count (SUC x)`
>>>>     \\ rw[] )
>>>>   >- (
>>>>     rw[EXTENSION]
>>>>     \\ qexists_tac`SUC x`
>>>>     \\ rw[] ));
>>>> 
>>>> 
>>>> On Tue, 18 Sep 2018 at 00:01, Chun Tian (binghe) <binghe.l...@gmail.com 
>>>> <mailto:binghe.l...@gmail.com>> wrote:
>>>> sorry, I also have this necessary assumption:
>>>> 
>>>>      5.  BIGUNION (IMAGE f 𝕌(:num)) = sp
>>>> 
>>>> > Il giorno 18 set 2018, alle ore 01:00, Chun Tian (binghe) 
>>>> > <binghe.l...@gmail.com <mailto:binghe.l...@gmail.com>> ha scritto:
>>>> >
>>>> > Hi,
>>>> >
>>>> > I ran into the following goal in the proof of a big theorem:
>>>> >
>>>> >   ∃x. a ⊆ f x
>>>> >   ------------------------------------
>>>> >     3.  f 0 = ∅
>>>> >     4.  ∀n. f n ⊆ f (SUC n)
>>>> >    20.  ∀n. f n ⊆ sp
>>>> >    21.  a ⊆ sp
>>>> >
>>>> > I have an increasing sequence of sets (f n) from empty to the whole 
>>>> > space (sp), and I have a single set “a” (⊆ sp). It looks *obvious* that, 
>>>> > I can always choose a big enough index x such that (f x) will contain 
>>>> > “a”. But how can I make this argument formal?
>>>> >
>>>> > thanks,
>>>> >
>>>> > Chun
>>>> >
>>>> 
>>>> _______________________________________________
>>>> hol-info mailing list
>>>> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net>
>>>> https://lists.sourceforge.net/lists/listinfo/hol-info 
>>>> <https://lists.sourceforge.net/lists/listinfo/hol-info>
>>> 
>>> 
>>> 
>>> 
>>> 
>>> _______________________________________________
>>> hol-info mailing list
>>> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net>
>>> https://lists.sourceforge.net/lists/listinfo/hol-info 
>>> <https://lists.sourceforge.net/lists/listinfo/hol-info>
>> 
>> _______________________________________________
>> hol-info mailing list
>> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net>
>> https://lists.sourceforge.net/lists/listinfo/hol-info
> 

Attachment: signature.asc
Description: Message signed with OpenPGP using GPGMail

_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to