I tried to recreate the issue.
I uploaded data in database from only one source 
(matricola_contatore=1012-008-5506) with two different files 
(data_for_influxdb.txt and data_for_influxdb_1.txt). In this files there are 
some points with  identical measurement name, tag, timestamp and value, as you 
can see in the example below:

Some points from file "data_for_influxdb.txt":
(...)
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476101100000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476100800000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476100500000000000
cumulato,matricola_contatore=1012-008-5506 value=117.901 1476100200000000000
cumulato,matricola_contatore=1012-008-5506 value=117.901 1476099900000000000
cumulato,matricola_contatore=1012-008-5506 value=117.889 1476099600000000000
cumulato,matricola_contatore=1012-008-5506 value=117.889 1476099300000000000
(...)

Some points from file "data_for_influxdb_1.txt":
(...)
cumulato,matricola_contatore=1012-008-5506 value=117.909 1476102000000000000
cumulato,matricola_contatore=1012-008-5506 value=117.905 1476101700000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476101400000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476101100000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476100800000000000
cumulato,matricola_contatore=1012-008-5506 value=117.902 1476100500000000000


I inserted data from the first file with the command:
curl -i -XPOST 'http://localhost:8086/write?db=GST4W_datalogger' --data-binary 
@data_for_influxdb.txt

and this was the result of the query 
> SELECT COUNT(value) FROM cumulato WHERE time>='2016-10-01 00:00:00' GROUP BY 
> time(1d)
name: cumulato
--------------
time                    count
1475280000000000000     288
1475366400000000000     288
1475452800000000000     288
1475539200000000000     288
1475625600000000000     288
1475712000000000000     288
1475798400000000000     288
1475884800000000000     288
1475971200000000000     288
1476057600000000000     288
1476144000000000000     288
1476230400000000000     156
1476316800000000000     0
1476403200000000000     0
1476489600000000000     0
1476576000000000000     0
1476662400000000000     0
1476748800000000000     0
1476835200000000000     0
1476921600000000000     0
1477008000000000000     0
1477094400000000000     0
1477180800000000000     0
1477267200000000000     0
1477353600000000000     0
(...)

Then I inserted data from the second file with the command
curl -i -XPOST 'http://localhost:8086/write?db=GST4W_datalogger' --data-binary 
@data_for_influxdb_1.txt

and this was the result of the previous query
> SELECT COUNT(value) FROM cumulato WHERE time>='2016-10-01 00:00:00' GROUP BY 
> time(1d)
name: cumulato
--------------
time                    count
1475280000000000000     288
1475366400000000000     288
1475452800000000000     288
1475539200000000000     288
1475625600000000000     288
1475712000000000000     288
1475798400000000000     288
1475884800000000000     288
1475971200000000000     288
1476057600000000000     433
1476144000000000000     576
1476230400000000000     444
1476316800000000000     288
1476403200000000000     288
1476489600000000000     288
1476576000000000000     288
1476662400000000000     288
1476748800000000000     288
1476835200000000000     288
1476921600000000000     288
1477008000000000000     288
1477094400000000000     288
1477180800000000000     288
1477267200000000000     288
1477353600000000000     288
(...)

We can see that there is an anomalous duplication of some points.
 

In addition if now I query a smaller interval the result changes:

> SELECT COUNT(value) FROM cumulato WHERE time>='2016-10-05 00:00:00' AND 
> time<='2016-10-14 23:55:00' GROUP BY time(1d)
name: cumulato
--------------
time                    count
1475625600000000000     288
1475712000000000000     288
1475798400000000000     288
1475884800000000000     288
1475971200000000000     288
1476057600000000000     288
1476144000000000000     288
1476230400000000000     156
1476316800000000000     0
1476403200000000000     0


and the query 
SELECT COUNT(value) FROM cumulato WHERE time>='2016-10-05 00:00:00' AND 
time<='2016-10-05 23:55:00' GROUP BY time(1d)
returns no result.

It seems to me that there may be some problems with time, but I'm not able to 
find them.




Il giorno mercoledì 2 novembre 2016 17:57:33 UTC+1, Sean Beckett ha scritto:
> On Wed, Nov 2, 2016 at 7:57 AM,  <[email protected]> wrote:
> Hi all,
> 
> after upgrading influxdb from 0.13 to 1.0 I notice some problems when I 
> insert data with identical measurement name, tag and timestamp writing 
> multiple points from different files: with old version the points were 
> overwritten but now points are duplicate.
> 
> 
> 
> There is no change in behavior between 0.13 and 1.0 when it comes to 
> duplicate measurement, tagset and timestamps. The duplicates are stored as 
> the union of the field sets, but the overall point count would be the same.
>  The files that I used is of this type:
> 
> cumulato,matricola_contatore=1012-008-5647 value=85.627 1476286500000000000
> 
> cumulato,matricola_contatore=1012-008-5647 value=85.627 1476286200000000000
> 
> cumulato,matricola_contatore=1012-008-5647 value=85.627 1476285900000000000
> 
> (...)
> 
> 
> 
> The files contain one value from 291 different sources every 5 minutes so 
> every day I should have 83808 (291*24*12) points.
> 
> I insert data in two different moments and the time series have 5 days during 
> which they overlap.
> 
> 
> 
> This is the result of the query SELECT COUNT(value) FROM cumulato WHERE 
> time>='2016-10-01T00:00:00Z' AND time<='2016-10-25T23:55:00Z' GROUP BY 
> time(1d)
> 
> 
> 
> name: cumulato
> 
> --------------
> 
> time                    count
> 
> 1475280000000000000     83808
> 
> 1475366400000000000     83808
> 
> 1475452800000000000     83808
> 
> 1475539200000000000     83808
> 
> 1475625600000000000     83808
> 
> 1475712000000000000     83808
> 
> 1475798400000000000     83808
> 
> 1475884800000000000     85175
> 
> 1475971200000000000     103426
> 
> 1476057600000000000     126510
> 
> 1476144000000000000     130752
> 
> 1476230400000000000     106096
> 
> 1476316800000000000     83983
> 
> 1476403200000000000     83808
> 
> 1476489600000000000     83808
> 
> 1476576000000000000     83808
> 
> 1476662400000000000     83808
> 
> 1476748800000000000     83808
> 
> 1476835200000000000     83808
> 
> 1476921600000000000     83808
> 
> 1477008000000000000     83808
> 
> 1477094400000000000     83808
> 
> 1477180800000000000     83808
> 
> 1477267200000000000     83808
> 
> 1477353600000000000     83808
> 
> 
> 
> 
> 
> How can I solve this issue?
> 
> 
> 
> For some reason, the points are distinct. Either they have distinct 
> measurements, tag sets, or timestamps. I recommend looking at the raw data 
> from those days to determine what is not as expected.
>  
> 
> 
> --
> 
> Remember to include the version number!
> 
> ---
> 
> You received this message because you are subscribed to the Google Groups 
> "InfluxData" group.
> 
> To unsubscribe from this group and stop receiving emails from it, send an 
> email to [email protected].
> 
> To post to this group, send email to [email protected].
> 
> Visit this group at https://groups.google.com/group/influxdb.
> 
> To view this discussion on the web visit 
> https://groups.google.com/d/msgid/influxdb/be14a610-7e56-4022-9a35-62762d41ff37%40googlegroups.com.
> 
> For more options, visit https://groups.google.com/d/optout.
> 
> 
> 
> 
> 
> -- 
> 
> 
> Sean Beckett
> Director of Support and Professional Services
> InfluxDB

-- 
Remember to include the version number!
--- 
You received this message because you are subscribed to the Google Groups 
"InfluxData" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/influxdb.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/influxdb/2018b5d7-e52b-4209-8f57-13ffb6fdcb2a%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

Reply via email to