[ 
https://issues.apache.org/jira/browse/BEAM-14337?focusedWorklogId=772796&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-772796
 ]

ASF GitHub Bot logged work on BEAM-14337:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 20/May/22 12:17
            Start Date: 20/May/22 12:17
    Worklog Time Spent: 10m 
      Work Description: yeandy commented on code in PR #17470:
URL: https://github.com/apache/beam/pull/17470#discussion_r878083266


##########
sdks/python/apache_beam/ml/inference/base_test.py:
##########
@@ -39,7 +41,12 @@ class FakeInferenceRunner(base.InferenceRunner):
   def __init__(self, clock=None):
     self._mock_clock = clock
 
-  def run_inference(self, batch: Any, model: Any) -> Iterable[Any]:
+  def run_inference(
+      self,
+      batch: Any,
+      model: Any,
+      prediction_params: Optional[Dict[str, Any]] = None,

Review Comment:
   If I take out `prediction_params`, I get 
   ```
         result_generator = self._inference_runner.run_inference(
   >         examples, self._model, self._prediction_params)
   E     TypeError: run_inference() takes 3 positional arguments but 4 were 
given [while running 'RunInference/ParDo(_RunInferenceDoFn)']
   
   apache_beam/ml/inference/base.py:216: TypeError
   ```
   
   If we allow this not to be a required param, then maybe we can check if 
`_prediction_params` is `None` like so? 
   ```
       if not self._prediction_params:
           result_generator = self._inference_runner.run_inference(
               examples, self._model, self._prediction_params)
       else:
               result_generator = self._inference_runner.run_inference(
               examples, self._model)
   ```
   That feels a bit messy though, and breaks our `run_inference` interface, 
assuming we want to use this modification:
   ```
   class InferenceRunner():
     def run_inference(
         self,
         batch: List[Any],
         model: Any,
         prediction_params: Optional[Dict[str, Any]] = None) -> Iterable[Any]:
       """Runs inferences on a batch of examples and
       returns an Iterable of Predictions."""
       raise NotImplementedError(type(self))
   ```
   





Issue Time Tracking
-------------------

    Worklog Id:     (was: 772796)
    Time Spent: 2h 50m  (was: 2h 40m)

> Support **kwargs for PyTorch models.
> ------------------------------------
>
>                 Key: BEAM-14337
>                 URL: https://issues.apache.org/jira/browse/BEAM-14337
>             Project: Beam
>          Issue Type: Sub-task
>          Components: sdk-py-core
>            Reporter: Anand Inguva
>            Assignee: Andy Ye
>            Priority: P2
>          Time Spent: 2h 50m
>  Remaining Estimate: 0h
>
> Some models in Pytorch instantiating from torch.nn.Module, has extra 
> parameters in the forward function call. These extra parameters can be passed 
> as Dict or as positional arguments. 
> Example of PyTorch models supported by Hugging Face -> 
> [https://huggingface.co/bert-base-uncased]
> [Some torch models on Hugging 
> face|https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py]
> Eg: 
> [https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel]
> {code:java}
> inputs = {
>      input_ids: Tensor1,
>      attention_mask: Tensor2,
>      token_type_ids: Tensor3,
> } 
> model = BertModel.from_pretrained("bert-base-uncased") # which is a  
> # subclass of torch.nn.Module
> outputs = model(**inputs) # model forward method should be expecting the keys 
> in the inputs as the positional arguments.{code}
>  
> [Transformers|https://pytorch.org/hub/huggingface_pytorch-transformers/] 
> integrated in Pytorch is supported by Hugging Face as well. 
>  



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to