[ 
https://issues.apache.org/jira/browse/BEAM-14337?focusedWorklogId=772797&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-772797
 ]

ASF GitHub Bot logged work on BEAM-14337:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 20/May/22 12:20
            Start Date: 20/May/22 12:20
    Worklog Time Spent: 10m 
      Work Description: yeandy commented on code in PR #17470:
URL: https://github.com/apache/beam/pull/17470#discussion_r878085542


##########
sdks/python/apache_beam/ml/inference/pytorch.py:
##########
@@ -39,25 +42,47 @@ class PytorchInferenceRunner(InferenceRunner):
   def __init__(self, device: torch.device):
     self._device = device
 
-  def run_inference(self, batch: List[torch.Tensor],
-                    model: torch.nn.Module) -> Iterable[PredictionResult]:
+  def run_inference(
+      self,
+      batch: List[Union[torch.Tensor, Dict[str, torch.Tensor]]],
+      model: torch.nn.Module,
+      prediction_params: Optional[Dict[str, Any]] = None,

Review Comment:
   Unfortunately, I get this lint warning `Dangerous default value {} as 
argument (dangerous-default-value)`. 
   
   Some explanations on why setting to `{}` is not good practice:
   
https://stackoverflow.com/questions/26320899/why-is-the-empty-dictionary-a-dangerous-default-value-in-python
   
https://stackoverflow.com/questions/51710037/how-should-i-use-the-optional-type-hint/51710151#51710151
   
   





Issue Time Tracking
-------------------

    Worklog Id:     (was: 772797)
    Time Spent: 3h  (was: 2h 50m)

> Support **kwargs for PyTorch models.
> ------------------------------------
>
>                 Key: BEAM-14337
>                 URL: https://issues.apache.org/jira/browse/BEAM-14337
>             Project: Beam
>          Issue Type: Sub-task
>          Components: sdk-py-core
>            Reporter: Anand Inguva
>            Assignee: Andy Ye
>            Priority: P2
>          Time Spent: 3h
>  Remaining Estimate: 0h
>
> Some models in Pytorch instantiating from torch.nn.Module, has extra 
> parameters in the forward function call. These extra parameters can be passed 
> as Dict or as positional arguments. 
> Example of PyTorch models supported by Hugging Face -> 
> [https://huggingface.co/bert-base-uncased]
> [Some torch models on Hugging 
> face|https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py]
> Eg: 
> [https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel]
> {code:java}
> inputs = {
>      input_ids: Tensor1,
>      attention_mask: Tensor2,
>      token_type_ids: Tensor3,
> } 
> model = BertModel.from_pretrained("bert-base-uncased") # which is a  
> # subclass of torch.nn.Module
> outputs = model(**inputs) # model forward method should be expecting the keys 
> in the inputs as the positional arguments.{code}
>  
> [Transformers|https://pytorch.org/hub/huggingface_pytorch-transformers/] 
> integrated in Pytorch is supported by Hugging Face as well. 
>  



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to