[ 
https://issues.apache.org/jira/browse/BEAM-14509?focusedWorklogId=774694&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-774694
 ]

ASF GitHub Bot logged work on BEAM-14509:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 25/May/22 17:00
            Start Date: 25/May/22 17:00
    Worklog Time Spent: 10m 
      Work Description: damccorm commented on code in PR #17752:
URL: https://github.com/apache/beam/pull/17752#discussion_r881905113


##########
sdks/go/pkg/beam/runners/dataflow/dataflow.go:
##########
@@ -51,26 +51,31 @@ import (
 // TODO(herohde) 5/16/2017: the Dataflow flags should match the other SDKs.
 
 var (
-       endpoint             = flag.String("dataflow_endpoint", "", "Dataflow 
endpoint (optional).")
-       stagingLocation      = flag.String("staging_location", "", "GCS staging 
location (required).")
-       image                = flag.String("worker_harness_container_image", 
"", "Worker harness container image (required).")
-       labels               = flag.String("labels", "", "JSON-formatted 
map[string]string of job labels (optional).")
-       serviceAccountEmail  = flag.String("service_account_email", "", 
"Service account email (optional).")
-       numWorkers           = flag.Int64("num_workers", 0, "Number of workers 
(optional).")
-       maxNumWorkers        = flag.Int64("max_num_workers", 0, "Maximum number 
of workers during scaling (optional).")
-       diskSizeGb           = flag.Int64("disk_size_gb", 0, "Size of root disk 
for VMs, in GB (optional).")
-       diskType             = flag.String("disk_type", "", "Type of root disk 
for VMs (optional).")
-       autoscalingAlgorithm = flag.String("autoscaling_algorithm", "", 
"Autoscaling mode to use (optional).")
-       zone                 = flag.String("zone", "", "GCP zone (optional)")
-       network              = flag.String("network", "", "GCP network 
(optional)")
-       subnetwork           = flag.String("subnetwork", "", "GCP subnetwork 
(optional)")
-       noUsePublicIPs       = flag.Bool("no_use_public_ips", false, "Workers 
must not use public IP addresses (optional)")
-       tempLocation         = flag.String("temp_location", "", "Temp location 
(optional)")
-       machineType          = flag.String("worker_machine_type", "", "GCE 
machine type (optional)")
-       minCPUPlatform       = flag.String("min_cpu_platform", "", "GCE minimum 
cpu platform (optional)")
-       workerJar            = flag.String("dataflow_worker_jar", "", "Dataflow 
worker jar (optional)")
-       workerRegion         = flag.String("worker_region", "", "Dataflow 
worker region (optional)")
-       workerZone           = flag.String("worker_zone", "", "Dataflow worker 
zone (optional)")
+       endpoint               = flag.String("dataflow_endpoint", "", "Dataflow 
endpoint (optional).")
+       stagingLocation        = flag.String("staging_location", "", "GCS 
staging location (required).")
+       image                  = flag.String("worker_harness_container_image", 
"", "Worker harness container image (required).")
+       labels                 = flag.String("labels", "", "JSON-formatted 
map[string]string of job labels (optional).")
+       serviceAccountEmail    = flag.String("service_account_email", "", 
"Service account email (optional).")
+       numWorkers             = flag.Int64("num_workers", 0, "Number of 
workers (optional).")
+       workerHarnessThreads   = flag.Int64("number_of_worker_harness_threads", 
0, "The number of threads per each worker harness process (optional).")
+       maxNumWorkers          = flag.Int64("max_num_workers", 0, "Maximum 
number of workers during scaling (optional).")
+       diskSizeGb             = flag.Int64("disk_size_gb", 0, "Size of root 
disk for VMs, in GB (optional).")
+       diskType               = flag.String("disk_type", "", "Type of root 
disk for VMs (optional).")
+       autoscalingAlgorithm   = flag.String("autoscaling_algorithm", "", 
"Autoscaling mode to use (optional).")
+       zone                   = flag.String("zone", "", "GCP zone (optional)")
+       kmsKey                 = flag.String("dataflow_kms_key", "", "The Cloud 
KMS key identifier used to encrypt data at rest (optional).")
+       network                = flag.String("network", "", "GCP network 
(optional)")
+       subnetwork             = flag.String("subnetwork", "", "GCP subnetwork 
(optional)")
+       noUsePublicIPs         = flag.Bool("no_use_public_ips", false, "Workers 
must not use public IP addresses (optional)")
+       tempLocation           = flag.String("temp_location", "", "Temp 
location (optional)")
+       machineType            = flag.String("worker_machine_type", "", "GCE 
machine type (optional)")
+       minCPUPlatform         = flag.String("min_cpu_platform", "", "GCE 
minimum cpu platform (optional)")
+       workerJar              = flag.String("dataflow_worker_jar", "", 
"Dataflow worker jar (optional)")
+       workerRegion           = flag.String("worker_region", "", "Dataflow 
worker region (optional)")
+       workerZone             = flag.String("worker_zone", "", "Dataflow 
worker zone (optional)")
+       dataflowServiceOptions = flag.String("dataflow_service_options", "", 
"Comma separated list of additional job modes and configurations (optional)")
+       flexRSGoal             = flag.String("flexrs_goal", "", "Which Flexible 
Resource Scheduling mode to run in (optional)")
+       enableHotKeyLogging    = flag.Bool("enable_hot_key_logging", false, 
"Specifies that when a hot key is detected in the pipeline, the literal, 
human-readable key is printed in the user's Cloud Logging project (optional).")

Review Comment:
   Done!



##########
sdks/go/pkg/beam/runners/dataflow/dataflow.go:
##########
@@ -90,29 +95,34 @@ func init() {
 // New flags that are already put into pipeline options
 // should be added to this map.
 var flagFilter = map[string]bool{
-       "dataflow_endpoint":              true,
-       "staging_location":               true,
-       "worker_harness_container_image": true,
-       "labels":                         true,
-       "service_account_email":          true,
-       "num_workers":                    true,
-       "max_num_workers":                true,
-       "disk_size_gb":                   true,
-       "disk_type":                      true,
-       "autoscaling_algorithm":          true,
-       "zone":                           true,
-       "network":                        true,
-       "subnetwork":                     true,
-       "no_use_public_ips":              true,
-       "temp_location":                  true,
-       "worker_machine_type":            true,
-       "min_cpu_platform":               true,
-       "dataflow_worker_jar":            true,
-       "worker_region":                  true,
-       "worker_zone":                    true,
-       "teardown_policy":                true,
-       "cpu_profiling":                  true,
-       "session_recording":              true,
+       "dataflow_endpoint":                true,
+       "staging_location":                 true,
+       "worker_harness_container_image":   true,
+       "labels":                           true,
+       "service_account_email":            true,
+       "num_workers":                      true,
+       "max_num_workers":                  true,
+       "number_of_worker_harness_threads": true,

Review Comment:
   Yeah, that's a good call. I removed the new items





Issue Time Tracking
-------------------

    Worklog Id:     (was: 774694)
    Time Spent: 1h 50m  (was: 1h 40m)

> Add Dataflow flags to Go
> ------------------------
>
>                 Key: BEAM-14509
>                 URL: https://issues.apache.org/jira/browse/BEAM-14509
>             Project: Beam
>          Issue Type: Improvement
>          Components: runner-dataflow, sdk-go
>            Reporter: Danny McCormick
>            Assignee: Danny McCormick
>            Priority: P2
>          Time Spent: 1h 50m
>  Remaining Estimate: 0h
>




--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to