[ 
https://issues.apache.org/jira/browse/MATH-321?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12786673#action_12786673
 ] 

Luc Maisonobe commented on MATH-321:
------------------------------------

There is some work ongoing (very slowly though, I'm sorry about that) to 
improve both SVD and eigen decomposition.

The current implementation is a simplified version of  lapack DSTEMR. Part of 
the simplification was to always compute all the eigenvalues, despite the 
original lapack function allowed to select some of them, either by a value 
range or by an index range. I want to remove this limitation and provide this 
feature in commons-math too.

This would be a first step towards partial SVD.

Any help on implementing this is welcome.

> Support for Sparse (Thin) SVD
> -----------------------------
>
>                 Key: MATH-321
>                 URL: https://issues.apache.org/jira/browse/MATH-321
>             Project: Commons Math
>          Issue Type: New Feature
>            Reporter: David Jurgens
>
> Current the SingularValueDecomposition implementation computes the full SVD.  
> However, for some applications, e.g. LSA, vision applications, only the most 
> significant singular values are needed.  For these applications, the full 
> decomposition is impractical, and for large matrices, computationally 
> infeasible.   The sparse SVD avoids computing the unnecessary data, and more 
> importantly, has significantly lower computational complexity, which allows 
> it to scale to larger matrices.
> Other linear algebra implementation have support for the sparse svd.  Both 
> Matlab and Octave have the svds function.  C has SVDLIBC.  SVDPACK is also 
> available in Fortran and C.  However, after extensive searching, I do not 
> believe there is any existing Java-based sparse SVD implementation.  This 
> added functionality would be widely used for any pure Java application that 
> requires a sparse SVD, as the only current solution is to call out to a 
> library in another language.

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to