[ 
https://issues.apache.org/jira/browse/FLINK-8866?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16524011#comment-16524011
 ] 

ASF GitHub Bot commented on FLINK-8866:
---------------------------------------

Github user twalthr commented on a diff in the pull request:

    https://github.com/apache/flink/pull/6201#discussion_r198215161
  
    --- Diff: 
flink-libraries/flink-table/src/test/scala/org/apache/flink/table/runtime/stream/sql/SqlITCase.scala
 ---
    @@ -712,7 +712,48 @@ class SqlITCase extends StreamingWithStateTestBase {
           "1,1,Hi,1970-01-01 00:00:00.001",
           "2,2,Hello,1970-01-01 00:00:00.002",
           "3,2,Hello world,1970-01-01 00:00:00.002")
    -    assertEquals(expected.sorted, MemoryTableSinkUtil.results.sorted)
    +    assertEquals(expected.sorted, 
MemoryTableSourceSinkUtil.tableData.map(_.toString).sorted)
    +  }
    +
    +  @Test
    +  def testWriteReadTableSourceSink(): Unit = {
    +    var env = StreamExecutionEnvironment.getExecutionEnvironment
    +    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    +    var tEnv = TableEnvironment.getTableEnvironment(env)
    +    MemoryTableSourceSinkUtil.clear
    +
    +    val t = StreamTestData.getSmall3TupleDataStream(env)
    +      .assignAscendingTimestamps(x => x._2)
    +      .toTable(tEnv, 'a, 'b, 'c, 'rowtime.rowtime)
    +    tEnv.registerTable("sourceTable", t)
    +
    +    val fieldNames = Array("a", "e", "f", "t")
    +    val fieldTypes = Array(Types.INT, Types.LONG, Types.STRING, 
Types.SQL_TIMESTAMP)
    +      .asInstanceOf[Array[TypeInformation[_]]]
    +
    +    val tableSchema = new TableSchema(
    +      Array("a", "e", "f", "t", "rowtime", "proctime"),
    +      Array(Types.INT, Types.LONG, Types.STRING, Types.SQL_TIMESTAMP,
    +        Types.SQL_TIMESTAMP, Types.SQL_TIMESTAMP))
    +    val returnType = new RowTypeInfo(
    +      Array(Types.INT, Types.LONG, Types.STRING, Types.SQL_TIMESTAMP)
    +        .asInstanceOf[Array[TypeInformation[_]]],
    +      Array("a", "e", "f", "t"))
    +    tEnv.registerTableSource("targetTable", new 
MemoryTableSourceSinkUtil.UnsafeMemoryTableSource(
    +      tableSchema, returnType, "rowtime", 3))
    +    tEnv.registerTableSink("targetTable",
    +      new 
MemoryTableSourceSinkUtil.UnsafeMemoryAppendTableSink().configure(fieldNames, 
fieldTypes))
    +
    +    tEnv.sqlUpdate("INSERT INTO targetTable SELECT a, b, c, rowtime FROM 
sourceTable")
    +    tEnv.sqlQuery("SELECT a, e, f, t, rowtime from targetTable")
    --- End diff --
    
    I think we need more test cases about how we handle the time attributes for 
`both` table types. Maybe not only ITCases but also unit tests. The `configure` 
method is an internal method that should not be called here.


> Create unified interfaces to configure and instatiate TableSinks
> ----------------------------------------------------------------
>
>                 Key: FLINK-8866
>                 URL: https://issues.apache.org/jira/browse/FLINK-8866
>             Project: Flink
>          Issue Type: New Feature
>          Components: Table API & SQL
>            Reporter: Timo Walther
>            Assignee: Shuyi Chen
>            Priority: Major
>              Labels: pull-request-available
>
> Similar to the efforts done in FLINK-8240. We need unified ways to configure 
> and instantiate TableSinks. Among other applications, this is necessary in 
> order to declare table sinks in an environment file of the SQL client. Such 
> that the sink can be used for {{INSERT INTO}} statements.
> Below are a few major changes in mind. 
> 1) Add TableSinkFactory/TableSinkFactoryService similar to 
> TableSourceFactory/TableSourceFactoryService
> 2) Add a common property called "type" with values (source, sink and both) 
> for both TableSource and TableSink.
> 3) in yaml file, replace "sources" with "tables", and use tableType to 
> identify whether it's source or sink.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to