[ 
https://issues.apache.org/jira/browse/FLINK-2634?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14877481#comment-14877481
 ] 

ASF GitHub Bot commented on FLINK-2634:
---------------------------------------

Github user vasia commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1105#discussion_r39928365
  
    --- Diff: 
flink-staging/flink-gelly/src/main/java/org/apache/flink/graph/library/TriangleCount.java
 ---
    @@ -0,0 +1,208 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.graph.library;
    +
    +import org.apache.flink.api.common.functions.FlatJoinFunction;
    +import org.apache.flink.api.common.functions.GroupReduceFunction;
    +import org.apache.flink.api.common.functions.MapFunction;
    +import org.apache.flink.api.common.functions.ReduceFunction;
    +import org.apache.flink.api.java.DataSet;
    +import org.apache.flink.api.java.tuple.Tuple1;
    +import org.apache.flink.api.java.tuple.Tuple2;
    +import org.apache.flink.graph.GraphAlgorithm;
    +import org.apache.flink.graph.Graph;
    +import org.apache.flink.graph.Vertex;
    +import org.apache.flink.graph.Edge;
    +import org.apache.flink.graph.EdgeDirection;
    +import org.apache.flink.graph.NeighborsFunctionWithVertexValue;
    +import org.apache.flink.graph.utils.VertexToTuple2Map;
    +import org.apache.flink.types.NullValue;
    +import org.apache.flink.util.Collector;
    +
    +import java.util.Iterator;
    +import java.util.TreeMap;
    +
    +/**
    + * Triangle Count Algorithm.
    + *
    + * This algorithm operates in three phases. First, vertices select 
neighbors with id greater than theirs
    + * and send messages to them. Each received message is then propagated to 
neighbors with higher id.
    + * Finally, if a node encounters the target id in the list of received 
messages, it increments the number
    + * of triangles found.
    + *
    + * For skewed graphs, we recommend calling the GSATriangleCount library 
method as it uses the more restrictive
    + * `reduceOnNeighbors` function which internally makes use of combiners to 
speed up computation.
    + *
    + * This implementation is non - iterative.
    + *
    + * The algorithm takes an undirected, unweighted graph as input and 
outputs a DataSet of
    + * Tuple1 which contains a single integer representing the number of 
triangles.
    + */
    +public class TriangleCount implements
    +           GraphAlgorithm<Long, NullValue, NullValue, 
DataSet<Tuple1<Integer>>> {
    +
    +   @Override
    +   public DataSet<Tuple1<Integer>> run(Graph<Long, NullValue, NullValue> 
graph) throws Exception {
    +
    +           // simulate the first superstep
    +           // select the neighbors with id greater than the current 
vertex's id
    +           DataSet<Vertex<Long, Long>> verticesWithHigherNeighbors =
    +                           graph.groupReduceOnNeighbors(new 
GatherHigherIdNeighbors(), EdgeDirection.IN);
    +
    +           // then group them by id to attach the resulting sets to the 
vertices
    +           DataSet<Vertex<Long, TreeMap<Long, Integer>>> 
verticesWithNeighborTreeMaps =
    +                           
verticesWithHigherNeighbors.groupBy(0).reduceGroup(new 
AttachNeighborIdsAsVertexValues());
    +
    +           // assign a value to the vertices with no neighbors as well
    +           Graph<Long, TreeMap<Long, Integer>, NullValue> 
graphWithInitializedVertexNeighbors =
    +                           graph.mapVertices(new InitializeTreeMaps());
    +
    +           Graph<Long, TreeMap<Long, Integer>, NullValue> 
graphWithVertexNeighbors = graphWithInitializedVertexNeighbors.
    +                           
joinWithVertices(verticesWithNeighborTreeMaps.map(new VertexToTuple2Map<Long, 
TreeMap<Long, Integer>>()),
    +                                           new RetrieveValueMapper());
    +
    +           // simulate the second superstep
    +           // propagate each received "message" to neighbors with higher id
    +           DataSet<Vertex<Long, Long>> verticesWithPropagatedValues =
    +                           
graphWithVertexNeighbors.groupReduceOnNeighbors(new PropagateNeighborValues(), 
EdgeDirection.IN);
    +
    +           DataSet<Vertex<Long, TreeMap<Long, Integer>>> 
verticesWithPropagatedTreeMaps =
    +                           
verticesWithPropagatedValues.groupBy(0).reduceGroup(new 
AttachNeighborIdsAsVertexValues());
    +
    +           DataSet<Tuple1<Integer>> numberOfTriangles = 
verticesWithPropagatedTreeMaps
    +                           .join(graph.getEdges())
    +                           .where(0).equalTo(0).with(new 
CountTriangles()).reduce(new ReduceFunction<Tuple1<Integer>>() {
    +
    +                                   @Override
    +                                   public Tuple1<Integer> 
reduce(Tuple1<Integer> firstTuple, Tuple1<Integer> secondTuple) throws 
Exception {
    +                                           return new 
Tuple1<Integer>(firstTuple.f0 + secondTuple.f0);
    +                                   }
    +                           });
    +
    +           return numberOfTriangles;
    +   }
    +
    +   @SuppressWarnings("serial")
    +   private static final class GatherHigherIdNeighbors implements
    +                   NeighborsFunctionWithVertexValue<Long, NullValue, 
NullValue, Vertex<Long, Long>> {
    +
    +           @Override
    +           public void iterateNeighbors(Vertex<Long, NullValue> vertex,
    +                                                   
Iterable<Tuple2<Edge<Long, NullValue>, Vertex<Long, NullValue>>> neighbors,
    +                                                   Collector<Vertex<Long, 
Long>> collector) throws Exception {
    +
    +                   Tuple2<Edge<Long, NullValue>, Vertex<Long, NullValue>> 
next = null;
    +                   Iterator<Tuple2<Edge<Long, NullValue>, Vertex<Long, 
NullValue>>> neighborsIterator =
    +                                   neighbors.iterator();
    +
    +                   while (neighborsIterator.hasNext()) {
    +                           next = neighborsIterator.next();
    +                           if(next.f1.getId() > vertex.getId()) {
    +                                   collector.collect(new Vertex<Long, 
Long>(next.f1.getId(), vertex.getId()));
    +                           }
    +                   }
    +           }
    +   }
    +
    +   @SuppressWarnings("serial")
    +   private static final class AttachNeighborIdsAsVertexValues implements 
GroupReduceFunction<Vertex<Long, Long>,
    +                   Vertex<Long, TreeMap<Long, Integer>>> {
    +
    +           @Override
    +           public void reduce(Iterable<Vertex<Long, Long>> vertices,
    +                                   Collector<Vertex<Long, TreeMap<Long, 
Integer>>> collector) throws Exception {
    +
    +                   Iterator<Vertex<Long, Long>> vertexIertator = 
vertices.iterator();
    +                   Vertex<Long, Long> next = null;
    +                   TreeMap<Long, Integer> neighbors = new TreeMap<Long, 
Integer>();
    +                   Long id = null;
    +
    +                   while (vertexIertator.hasNext()) {
    +                           next = vertexIertator.next();
    +                           id = next.getId();
    +
    +                           Integer value = neighbors.get(next.getValue());
    +                           if (value != null) {
    +                                   neighbors.put(next.getValue(), value + 
1);
    +                           } else {
    +                                   neighbors.put(next.getValue(), 1);
    +                           }
    +                   }
    +
    +                   collector.collect(new Vertex<Long, TreeMap<Long, 
Integer>>(id, neighbors));
    +           }
    +   }
    +
    +   @SuppressWarnings("serial")
    +   private static final class InitializeTreeMaps implements 
MapFunction<Vertex<Long, NullValue>, TreeMap<Long, Integer>> {
    +
    +           @Override
    +           public TreeMap<Long, Integer> map(Vertex<Long, NullValue> 
vertex) throws Exception {
    +                   return new TreeMap<Long, Integer>();
    +           }
    +   }
    +
    +   @SuppressWarnings("serial")
    +   private static final class RetrieveValueMapper implements 
MapFunction<Tuple2<TreeMap<Long, Integer>,
    +                   TreeMap<Long, Integer>>, TreeMap<Long, Integer>> {
    +
    +           @Override
    +           public TreeMap<Long, Integer> map(Tuple2<TreeMap<Long, 
Integer>, TreeMap<Long, Integer>> value) throws Exception {
    +                   return value.f1;
    --- End diff --
    
    I believe you can simplify this with a `project(1)`.


> Add a Vertex-centric Version of the Tringle Count Library Method
> ----------------------------------------------------------------
>
>                 Key: FLINK-2634
>                 URL: https://issues.apache.org/jira/browse/FLINK-2634
>             Project: Flink
>          Issue Type: Task
>          Components: Gelly
>    Affects Versions: 0.10
>            Reporter: Andra Lungu
>            Assignee: Andra Lungu
>            Priority: Minor
>
> The vertex-centric version of this algorithm receives an undirected graph as 
> input and outputs the total number of triangles formed by the graph's edges.
> The implementation consists of three phases:
> 1). Select neighbours with id greater than the current vertex id.
> 2). Propagate each received value to neighbours with higher id. 
> 3). Compute the number of Triangles by verifying if the final vertex contains 
> the sender's id in its list.
> As opposed to the GAS version, all these three steps will be performed via 
> message passing. 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to