xintongsong commented on a change in pull request #9805: [FLINK-14227]
translate dev/stream/state/checkpointing into Chinese
URL: https://github.com/apache/flink/pull/9805#discussion_r329421500
##########
File path: docs/dev/stream/state/checkpointing.zh.md
##########
@@ -25,146 +25,138 @@ under the License.
* ToC
{:toc}
-Every function and operator in Flink can be **stateful** (see [working with
state](state.html) for details).
-Stateful functions store data across the processing of individual
elements/events, making state a critical building block for
-any type of more elaborate operation.
+Flink 中的每个方法或算子都能够被**状态化**(阅读 [working with state](state.html) 查看详细)。
+状态化的方法在处理单个 元素/事件 的时候存储数据,让状态成为使各个类型的算子更加精细的重要部分。
+为了让状态容错,Flink 需要为状态添加**检查点(Checkpoint)**。检查点允许 Flink
恢复状态,并且能够在流中定位,让应用像无故障一样的运行。
-In order to make state fault tolerant, Flink needs to **checkpoint** the
state. Checkpoints allow Flink to recover state and positions
-in the streams to give the application the same semantics as a failure-free
execution.
+[Documentation on streaming fault tolerance]({{ site.baseurl
}}/internals/stream_checkpointing.html) 介绍了 Flink 流计算容错机制的内部技术原理。
-The [documentation on streaming fault tolerance]({{ site.baseurl
}}/internals/stream_checkpointing.html) describes in detail the technique
behind Flink's streaming fault tolerance mechanism.
+## 前提条件
-## Prerequisites
+Flink 的检查点机制会与流和状态的持久化存储交互。一般需要:
-Flink's checkpointing mechanism interacts with durable storage for streams and
state. In general, it requires:
+ - 一个能够在一定时间内重新得到记录的持久化数据源,例如持久化消息队列(例如 Apache Kafka、RabbitMQ、 Amazon
Kinesis、 Google PubSub 等)或文件系统(例如 HDFS、 S3、 GFS、 NFS、 Ceph 等)。
Review comment:
一个能够回放一段时间内数据的持久化数据源
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services