xintongsong commented on a change in pull request #9763: [FLINK-13037][docs-zh] Translate "Concepts -> Glossary" page into Chinese URL: https://github.com/apache/flink/pull/9763#discussion_r329450813
########## File path: docs/concepts/glossary.zh.md ########## @@ -25,142 +25,92 @@ under the License. #### Flink Application Cluster -A Flink Application Cluster is a dedicated [Flink Cluster](#flink-cluster) that only -executes a single [Flink Job](#flink-job). The lifetime of the -[Flink Cluster](#flink-cluster) is bound to the lifetime of the Flink Job. Formerly -Flink Application Clusters were also known as Flink Clusters in *job mode*. Compare to -[Flink Session Cluster](#flink-session-cluster). +Flink Application Cluster 是一个专用的 [Flink Cluster](#flink-cluster),它仅用于执行单个 [Flink Job](#flink-job)。[Flink Cluster](#flink-cluster)的生命周期与 [Flink Job](#flink-job)的生命周期绑定在一起。以前,在*工作模式*中,Flink Application Cluster 也称为 Flink Clusters。和 [Flink Session Cluster](#flink-session-cluster) 作对比。 #### Flink Cluster -A distributed system consisting of (typically) one [Flink Master](#flink-master) and one or more -[Flink TaskManager](#flink-taskmanager) processes. +一般情况下,Flink 集群是由一个 [Flink Master](#flink-master) 和一个或多个 [Flink TaskManager](#flink-taskmanager) 进程组成的分布式系统。 #### Event -An event is a statement about a change of the state of the domain modelled by the -application. Events can be input and/or output of a stream or batch processing application. -Events are special types of [records](#Record). +Event 是对应用程序建模的域的状态更改的声明。它可以同时为流或批处理应用程序的 input 和 output,也可以单独是 input 或者 output 中的一种。Event 是特殊类型的 [Record](#record)。 #### ExecutionGraph -see [Physical Graph](#physical-graph) +见 [Physical Graph](#physical-graph)。 #### Function -Functions are implemented by the user and encapsulate the -application logic of a Flink program. Most Functions are wrapped by a corresponding -[Operator](#operator). +Function 是由用户实现的,并封装了 Flink 程序的应用程序逻辑。大多数 Function 都由相应的 [Operator](#operator) 封装。 #### Instance -The term *instance* is used to describe a specific instance of a specific type (usually -[Operator](#operator) or [Function](#function)) during runtime. As Apache Flink is mostly written in -Java, this corresponds to the definition of *Instance* or *Object* in Java. In the context of Apache -Flink, the term *parallel instance* is also frequently used to emphasize that multiple instances of -the same [Operator](#operator) or [Function](#function) type are running in parallel. +Instance 常用于描述运行时的特定类型(通常是 [Operator](#operator) 或者 [Function](#function) )。由于 Apache Flink 主要是用 Java 编写的,所以,这与 Java 中的 Instance 或 Object 的定义相对应。在 Apache Flink 的上下文中,*parallel instance* 也常用于强调同一 [Operator](#operator) 或者 [Function](#function) 的多个 instance 以并行的方式运行。 #### Flink Job -A Flink Job is the runtime representation of a Flink program. A Flink Job can either be submitted -to a long running [Flink Session Cluster](#flink-session-cluster) or it can be started as a -self-contained [Flink Application Cluster](#flink-application-cluster). +Flink Job 代表运行时的 Flink 程序。Flink Job 可以提交到长时间运行的 [Flink Session Cluster](#flink-session-cluster),也可以作为独立的 [Flink Application Cluster](#flink-application-cluster) 启动。 #### JobGraph -see [Logical Graph](#logical-graph) +见 [Logical Graph](#logical-graph)。 #### Flink JobManager -JobManagers are one of the components running in the [Flink Master](#flink-master). A JobManager is -responsible for supervising the execution of the [Tasks](#task) of a single job. Historically, the -whole [Flink Master](#flink-master) was called JobManager. +JobManager 是在 [Flink Master](#flink-master) 运行中的组件之一。JobManager 负责监督单个作业 [Task](#task) 的执行。以前,整个 [Flink Master](#flink-master) 都叫做 JobManager。 #### Logical Graph -A logical graph is a directed graph describing the high-level logic of a stream processing program. -The nodes are [Operators](#operator) and the edges indicate input/output-relationships or -data streams or data sets. +Logical Graph 是一种描述流处理程序的高阶逻辑有向图。节点是[Operator](#operator),边代表输入/输出关系、数据流和数据集中的之一。 #### Managed State -Managed State describes application state which has been registered with the framework. For -Managed State, Apache Flink will take care about persistence and rescaling among other things. +Managed State 描述了已在框架中注册的应用程序的状态。对于状态托管,Apache Flink 重点关注持久性和重新调整等其他事项。 #### Flink Master -The Flink Master is the master of a [Flink Cluster](#flink-cluster). It contains three distinct -components: Flink Resource Manager, Flink Dispatcher and one [Flink JobManager](#flink-jobmanager) -per running [Flink Job](#flink-job). +Flink Master 是 [Flink Cluster](#flink-cluster) 的宿主。它包含三个不同的组件:Flink Resource Manager、Flink Dispatcher、运行每个 [Flink Job](#flink-job) 的 [Flink JobManager](#flink-jobmanager)。 #### Operator -Node of a [Logical Graph](#logical-graph). An Operator performs a certain operation, which is -usually executed by a [Function](#function). Sources and Sinks are special Operators for data -ingestion and data egress. +[Logical Graph](#logical-graph) 的节点。算子执行某种操作,该操作通常由 [Function](#function) 执行。Source 和 Sink 是数据输入和数据输出的特殊算子。 #### Operator Chain -An Operator Chain consists of two or more consecutive [Operators](#operator) without any -repartitioning in between. Operators within the same Operator Chain forward records to each other -directly without going through serialization or Flink's network stack. +算子链由两个或多个连续的 [Operator](#operator) 组成,两者之间没有任何的重新分区。同一算子链中的算子可以直接相互记录,而无需通过序列化或 Flink 的网络堆栈。 #### Partition -A partition is an independent subset of the overall data stream or data set. A data stream or -data set is divided into partitions by assigning each [record](#Record) to one or more partitions. -Partitions of data streams or data sets are consumed by [Tasks](#task) during runtime. A -transformation which changes the way a data stream or data set is partitioned is often called -repartitioning. +分区是整个数据流或数据集的独立子集。通过将每个 [Record](#record) 分配给一个或多个分区,来把数据流或数据集划分为多个分区。在运行期间,[Task](#task) 会使用数据流或数据集的分区。改变数据流或数据集分区方式的转换通常称为重分区。 Review comment: 使用 -> 消费 ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: [email protected] With regards, Apache Git Services
