klion26 commented on a change in pull request #11971:
URL: https://github.com/apache/flink/pull/11971#discussion_r422456499
##########
File path: docs/training/datastream_api.zh.md
##########
@@ -24,30 +24,27 @@ specific language governing permissions and limitations
under the License.
-->
-The focus of this training is to broadly cover the DataStream API well enough
that you will be able
-to get started writing streaming applications.
+该练习的重点是充分全面地了解 DataStream API,以便于入门编写流式应用。
* This will be replaced by the TOC
{:toc}
-## What can be Streamed?
+## 什么能被转化成流?
-Flink's DataStream APIs for Java and Scala will let you stream anything they
can serialize. Flink's
-own serializer is used for
+Flink 的 Java 和 Scala DataStream API 可以将任何可序列化的对象转化为流。Flink 自带的序列化器有
-- basic types, i.e., String, Long, Integer, Boolean, Array
-- composite types: Tuples, POJOs, and Scala case classes
+- 基本类型,即String、Long、Integer、Boolean、Array
+- 复合类型:Tuples、POJOs 和 Scala case classes
-and Flink falls back to Kryo for other types. It is also possible to use other
serializers with
-Flink. Avro, in particular, is well supported.
+而且 Flink 可以交给 Kryo 序列化其他类型。也可以将其他序列化器和 Flink 一起使用。特别是有良好支持的 Avro。
Review comment:
这里我建议用 ”会交给“ 而不是 ”可以交给“ 是因为,从语义上来说,”可以交给“,那也可以 ”不“
交给,是一个可选项。但是这里的意思不是一个可选项,而是说,会直接使用 Kryo 进行序列化。
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]