[ https://issues.apache.org/jira/browse/FLINK-1979?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15286480#comment-15286480 ]
ASF GitHub Bot commented on FLINK-1979: --------------------------------------- Github user tillrohrmann commented on a diff in the pull request: https://github.com/apache/flink/pull/1985#discussion_r63510204 --- Diff: flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/optimization/PartialLossFunction.scala --- @@ -47,21 +47,106 @@ object SquaredLoss extends PartialLossFunction { /** Calculates the loss depending on the label and the prediction * - * @param prediction - * @param label - * @return + * @param prediction The predicted value + * @param label The true value + * @return The loss */ override def loss(prediction: Double, label: Double): Double = { 0.5 * (prediction - label) * (prediction - label) } /** Calculates the derivative of the [[PartialLossFunction]] * - * @param prediction - * @param label - * @return + * @param prediction The predicted value + * @param label The true value + * @return The derivative of the loss function */ override def derivative(prediction: Double, label: Double): Double = { (prediction - label) } } + +/** Logistic loss function which can be used with the [[GenericLossFunction]] + * + * + * The [[LogisticLoss]] function implements `log(1 + exp(prediction*label))` --- End diff -- A minus is missing in the exponent of e. > Implement Loss Functions > ------------------------ > > Key: FLINK-1979 > URL: https://issues.apache.org/jira/browse/FLINK-1979 > Project: Flink > Issue Type: Improvement > Components: Machine Learning Library > Reporter: Johannes Günther > Assignee: Johannes Günther > Priority: Minor > Labels: ML > > For convex optimization problems, optimizer methods like SGD rely on a > pluggable implementation of a loss function and its first derivative. -- This message was sent by Atlassian JIRA (v6.3.4#6332)