[
https://issues.apache.org/jira/browse/FLINK-25084?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17450167#comment-17450167
]
Jing Zhang commented on FLINK-25084:
------------------------------------
[~ibuda] Thanks for reporting this BUG. It seems to be a duplicate with
[FLINK-23919|https://issues.apache.org/jira/browse/FLINK-23919] which would
been solved in 1.13.4.
> Field names must be unique. Found duplicates
> --------------------------------------------
>
> Key: FLINK-25084
> URL: https://issues.apache.org/jira/browse/FLINK-25084
> Project: Flink
> Issue Type: Bug
> Components: API / DataStream
> Affects Versions: 1.13.2
> Environment: AWS Kinesis Application in Zeppelin
> Apache Flink 1.13, Apache Zeppelin 0.9
>
> Reporter: Ivan Budanaev
> Priority: Major
> Attachments: Screenshot 2021-11-28 at 13.10.57.png
>
>
> I am getting a "Field names must be unique. Found duplicates" error when
> trying to aggregate a column used as a descriptor in HOP windowing.
> Imagine this example, with *events_table* reading from kinesis stream, the
> definition given below, I am getting the "Field names must be unique. Found
> duplicates: [ts]" when trying to run the following SQL in Kinesis Data
> Analytics Application in Zeppelin:
> {code:sql}
> %flink.ssql(type=update)
> -- insert into learn_actions_deduped
> SELECT window_start, window_end, uuid, event_type, max(ts) as max_event_ts
> FROM TABLE(HOP(TABLE events_table, DESCRIPTOR(ts), INTERVAL '5' SECONDS,
> INTERVAL '15' MINUTES))
> GROUP BY window_start, window_end, uuid, event_type;
> {code}
> The question is how can I use the descriptor column in aggregation without
> having to duplicate it?
> The error details:
> java.io.IOException: Fail to run stream sql job
> at
> org.apache.zeppelin.flink.sql.AbstractStreamSqlJob.run(AbstractStreamSqlJob.java:172)
> at
> org.apache.zeppelin.flink.sql.AbstractStreamSqlJob.run(AbstractStreamSqlJob.java:105)
> at
> org.apache.zeppelin.flink.FlinkStreamSqlInterpreter.callInnerSelect(FlinkStreamSqlInterpreter.java:89)
> at
> org.apache.zeppelin.flink.FlinkSqlInterrpeter.callSelect(FlinkSqlInterrpeter.java:503)
> at
> org.apache.zeppelin.flink.FlinkSqlInterrpeter.callCommand(FlinkSqlInterrpeter.java:266)
> at
> org.apache.zeppelin.flink.FlinkSqlInterrpeter.runSqlList(FlinkSqlInterrpeter.java:160)
> at
> org.apache.zeppelin.flink.FlinkSqlInterrpeter.internalInterpret(FlinkSqlInterrpeter.java:112)
> at
> org.apache.zeppelin.interpreter.AbstractInterpreter.interpret(AbstractInterpreter.java:47)
> at
> org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:110)
> at
> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:852)
> at
> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:744)
> at org.apache.zeppelin.scheduler.Job.run(Job.java:172)
> at
> org.apache.zeppelin.scheduler.AbstractScheduler.runJob(AbstractScheduler.java:132)
> at
> org.apache.zeppelin.scheduler.ParallelScheduler.lambda$runJobInScheduler$0(ParallelScheduler.java:46)
> at
> java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
> at
> java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
> at java.base/java.lang.Thread.run(Thread.java:829)
> Caused by: java.lang.RuntimeException: Error while applying rule
> PullUpWindowTableFunctionIntoWindowAggregateRule, args
> [rel#1172:StreamPhysicalWindowAggregate.STREAM_PHYSICAL.any.None:
> 0.[NONE].[NONE](input=RelSubset#1170,groupBy=uuid,
> event_type,window=HOP(win_start=[window_start], win_end=[window_end],
> size=[15 min], slide=[5 s]),select=uuid, event_type, MAX(ts) AS max_event_ts,
> start('w$) AS window_start, end('w$) AS window_end),
> rel#1179:StreamPhysicalExchange.STREAM_PHYSICAL.hash[2, 3]true.None:
> 0.[NONE].[NONE](input=RelSubset#1169,distribution=hash[uuid, event_type]),
> rel#1168:StreamPhysicalCalc.STREAM_PHYSICAL.any.None:
> 0.[NONE].[NONE](input=RelSubset#1167,select=window_start, window_end, uuid,
> event_type, CAST(ts) AS ts),
> rel#1166:StreamPhysicalWindowTableFunction.STREAM_PHYSICAL.any.None:
> 0.[NONE].[NONE](input=RelSubset#1165,window=HOP(time_col=[ts], size=[15 min],
> slide=[5 s]))]
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.onMatch(VolcanoRuleCall.java:256)
> at
> org.apache.calcite.plan.volcano.IterativeRuleDriver.drive(IterativeRuleDriver.java:58)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.findBestExp(VolcanoPlanner.java:510)
> at
> org.apache.calcite.tools.Programs$RuleSetProgram.run(Programs.java:312)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkVolcanoProgram.optimize(FlinkVolcanoProgram.scala:69)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkChainedProgram.$anonfun$optimize$1(FlinkChainedProgram.scala:62)
> at
> scala.collection.TraversableOnce.$anonfun$foldLeft$1(TraversableOnce.scala:156)
> at
> scala.collection.TraversableOnce.$anonfun$foldLeft$1$adapted(TraversableOnce.scala:156)
> at scala.collection.Iterator.foreach(Iterator.scala:937)
> at scala.collection.Iterator.foreach$(Iterator.scala:937)
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1425)
> at scala.collection.IterableLike.foreach(IterableLike.scala:70)
> at scala.collection.IterableLike.foreach$(IterableLike.scala:69)
> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
> at scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:156)
> at scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:154)
> at scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkChainedProgram.optimize(FlinkChainedProgram.scala:58)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.optimizeTree(StreamCommonSubGraphBasedOptimizer.scala:163)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.doOptimize(StreamCommonSubGraphBasedOptimizer.scala:83)
> at
> org.apache.flink.table.planner.plan.optimize.CommonSubGraphBasedOptimizer.optimize(CommonSubGraphBasedOptimizer.scala:77)
> at
> org.apache.flink.table.planner.delegation.PlannerBase.optimize(PlannerBase.scala:279)
> at
> org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:163)
> at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translate(TableEnvironmentImpl.java:1518)
> at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translateAndClearBuffer(TableEnvironmentImpl.java:1510)
> at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.execute(TableEnvironmentImpl.java:1460)
> at
> org.apache.zeppelin.flink.sql.AbstractStreamSqlJob.run(AbstractStreamSqlJob.java:161)
> ... 16 more
> Caused by: java.lang.RuntimeException: Error occurred while applying rule
> PullUpWindowTableFunctionIntoWindowAggregateRule
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.transformTo(VolcanoRuleCall.java:161)
> at
> org.apache.calcite.plan.RelOptRuleCall.transformTo(RelOptRuleCall.java:268)
> at
> org.apache.calcite.plan.RelOptRuleCall.transformTo(RelOptRuleCall.java:283)
> at
> org.apache.flink.table.planner.plan.rules.physical.stream.PullUpWindowTableFunctionIntoWindowAggregateRule.onMatch(PullUpWindowTableFunctionIntoWindowAggregateRule.scala:143)
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.onMatch(VolcanoRuleCall.java:229)
> ... 42 more
> Caused by: org.apache.flink.table.api.ValidationException: Field names must
> be unique. Found duplicates: [ts]
> at
> org.apache.flink.table.types.logical.RowType.validateFields(RowType.java:272)
> at org.apache.flink.table.types.logical.RowType.(RowType.java:157)
> at org.apache.flink.table.types.logical.RowType.of(RowType.java:297)
> at org.apache.flink.table.types.logical.RowType.of(RowType.java:289)
> at
> org.apache.flink.table.planner.calcite.FlinkTypeFactory$.toLogicalRowType(FlinkTypeFactory.scala:657)
> at
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamPhysicalWindowAggregate.aggInfoList$lzycompute(StreamPhysicalWindowAggregate.scala:60)
> at
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamPhysicalWindowAggregate.aggInfoList(StreamPhysicalWindowAggregate.scala:59)
> at
> org.apache.flink.table.planner.plan.nodes.physical.stream.StreamPhysicalWindowAggregate.explainTerms(StreamPhysicalWindowAggregate.scala:86)
> at
> org.apache.calcite.rel.AbstractRelNode.getDigestItems(AbstractRelNode.java:409)
> at
> org.apache.calcite.rel.AbstractRelNode.deepHashCode(AbstractRelNode.java:391)
> at
> org.apache.calcite.rel.AbstractRelNode$InnerRelDigest.hashCode(AbstractRelNode.java:443)
> at java.base/java.util.HashMap.hash(HashMap.java:339)
> at java.base/java.util.HashMap.get(HashMap.java:552)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.registerImpl(VolcanoPlanner.java:1150)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.register(VolcanoPlanner.java:589)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.ensureRegistered(VolcanoPlanner.java:604)
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.transformTo(VolcanoRuleCall.java:148)
> ... 46 more
> {code:sql}
> CREATE TABLE events_table (
> uuid varchar(36),
> event_type VARCHAR(20),
> ts TIMESTAMP(3),
> WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
> )
> PARTITIONED BY (event_type)
> WITH (
> 'connector' = 'kinesis',
> 'stream' = 'kinesis-event-stream',
> 'aws.region' = 'us-west-2',
> 'scan.stream.initpos' = 'TRIM_HORIZON',
> 'format' = 'json',
> 'scan.stream.recordpublisher' = 'EFO',
> 'scan.stream.efo.consumername' = 'learn-actions-efo',
> 'scan.stream.efo.registration' = 'LAZY', -- EAGER
> 'json.timestamp-format.standard' = 'ISO-8601'
> );
> {code}
--
This message was sent by Atlassian Jira
(v8.20.1#820001)