lindong28 commented on a change in pull request #52:
URL: https://github.com/apache/flink-ml/pull/52#discussion_r831980106



##########
File path: 
flink-ml-lib/src/test/java/org/apache/flink/ml/feature/stringindexer/StringIndexerTest.java
##########
@@ -0,0 +1,317 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.feature.stringindexer;
+
+import org.apache.flink.api.common.restartstrategy.RestartStrategies;
+import org.apache.flink.configuration.Configuration;
+import org.apache.flink.ml.util.ReadWriteUtils;
+import org.apache.flink.ml.util.StageTestUtils;
+import 
org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.test.util.AbstractTestBase;
+import org.apache.flink.types.Row;
+
+import org.apache.commons.collections.IteratorUtils;
+import org.junit.Before;
+import org.junit.Rule;
+import org.junit.Test;
+import org.junit.rules.TemporaryFolder;
+
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Set;
+
+import static org.junit.Assert.assertArrayEquals;
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.assertTrue;
+import static org.junit.Assert.fail;
+
+/** Tests the {@link StringIndexer} and {@link StringIndexerModel}. */
+public class StringIndexerTest extends AbstractTestBase {
+    @Rule public final TemporaryFolder tempFolder = new TemporaryFolder();
+    private StreamExecutionEnvironment env;
+    private StreamTableEnvironment tEnv;
+    private Table trainTable;
+    private Table predictTable;
+
+    private final String[][] expectedAlphabeticAscModelData =
+            new String[][] {{"a", "b", "c", "d"}, {"-1.0", "0.0", "1.0", 
"2.0"}};
+    private final List<Row> expectedAlphabeticAscPredictData =
+            Arrays.asList(Row.of("a", 2.0, 0, 3), Row.of("b", 1.0, 1, 2), 
Row.of("e", 2.0, 4, 3));
+    private final List<Row> expectedAlphabeticDescPredictData =
+            Arrays.asList(Row.of("a", 2.0, 3, 0), Row.of("b", 1.0, 2, 1), 
Row.of("e", 2.0, 4, 0));
+    private final List<Row> expectedFreqAscPredictData =
+            Arrays.asList(Row.of("a", 2.0, 2, 3), Row.of("b", 1.0, 3, 1), 
Row.of("e", 2.0, 4, 3));
+    private final List<Row> expectedFreqDescPredictData =
+            Arrays.asList(Row.of("a", 2.0, 1, 0), Row.of("b", 1.0, 0, 2), 
Row.of("e", 2.0, 4, 0));
+
+    @Before
+    public void before() {
+        Configuration config = new Configuration();
+        
config.set(ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH, 
true);
+        env = StreamExecutionEnvironment.getExecutionEnvironment(config);
+        env.setParallelism(4);
+        env.enableCheckpointing(100);
+        env.setRestartStrategy(RestartStrategies.noRestart());
+        tEnv = StreamTableEnvironment.create(env);
+        List<Row> trainData =
+                Arrays.asList(
+                        Row.of("a", 1.0),
+                        Row.of("b", 1.0),
+                        Row.of("b", 2.0),
+                        Row.of("c", 0.0),
+                        Row.of("d", 2.0),
+                        Row.of("a", 2.0),
+                        Row.of("b", 2.0),
+                        Row.of("b", -1.0),
+                        Row.of("a", -1.0),
+                        Row.of("c", -1.0));
+        trainTable =
+                
tEnv.fromDataStream(env.fromCollection(trainData)).as("inputCol1", "inputCol2");
+        List<Row> predictData = Arrays.asList(Row.of("a", 2.0), Row.of("b", 
1.0), Row.of("e", 2.0));
+        predictTable =
+                
tEnv.fromDataStream(env.fromCollection(predictData)).as("inputCol1", 
"inputCol2");
+    }
+
+    @Test
+    public void testFitParam() {
+        StringIndexer stringIndexer = new StringIndexer();
+        assertEquals(stringIndexer.getStringOrderType(), 
StringIndexerParams.ARBITRARY_ORDER);
+        assertEquals(stringIndexer.getHandleInvalid(), 
StringIndexerParams.ERROR_INVALID);
+
+        stringIndexer
+                .setInputCols("inputCol1", "inputCol2")
+                .setOutputCols("outputCol1", "outputCol2")
+                .setStringOrderType(StringIndexerParams.ALPHABET_ASC_ORDER)
+                .setHandleInvalid(StringIndexerParams.SKIP_INVALID);
+        assertArrayEquals(new String[] {"inputCol1", "inputCol2"}, 
stringIndexer.getInputCols());
+        assertArrayEquals(new String[] {"outputCol1", "outputCol2"}, 
stringIndexer.getOutputCols());
+        assertEquals(stringIndexer.getStringOrderType(), 
StringIndexerParams.ALPHABET_ASC_ORDER);
+        assertEquals(stringIndexer.getHandleInvalid(), 
StringIndexerParams.SKIP_INVALID);
+    }
+
+    @Test
+    public void testPredictParam() {
+        StringIndexer stringIndexer =
+                new StringIndexer()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        
.setStringOrderType(StringIndexerParams.ALPHABET_ASC_ORDER)
+                        .setHandleInvalid(StringIndexerParams.SKIP_INVALID);
+        Table output = 
stringIndexer.fit(trainTable).transform(predictTable)[0];
+        assertEquals(
+                Arrays.asList("inputCol1", "inputCol2", "outputCol1", 
"outputCol2"),
+                output.getResolvedSchema().getColumnNames());
+    }
+
+    @Test
+    @SuppressWarnings("all")
+    public void testStringOrderType() throws Exception {
+        StringIndexer stringIndexer =
+                new StringIndexer()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setHandleInvalid(StringIndexerParams.KEEP_INVALID);
+        Table output;
+        List<Row> predictedResult;
+
+        // alphabetAsc
+        
stringIndexer.setStringOrderType(StringIndexerParams.ALPHABET_ASC_ORDER);
+        output = stringIndexer.fit(trainTable).transform(predictTable)[0];
+        predictedResult = 
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        verifyPredictionResult(expectedAlphabeticAscPredictData, 
predictedResult);
+
+        // alphabetDesc
+        
stringIndexer.setStringOrderType(StringIndexerParams.ALPHABET_DESC_ORDER);
+        output = stringIndexer.fit(trainTable).transform(predictTable)[0];
+        predictedResult = 
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        verifyPredictionResult(expectedAlphabeticDescPredictData, 
predictedResult);
+
+        // frequencyAsc
+        
stringIndexer.setStringOrderType(StringIndexerParams.FREQUENCY_ASC_ORDER);
+        output = stringIndexer.fit(trainTable).transform(predictTable)[0];
+        predictedResult = 
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        verifyPredictionResult(expectedFreqAscPredictData, predictedResult);
+
+        // frequencyDesc
+        
stringIndexer.setStringOrderType(StringIndexerParams.FREQUENCY_DESC_ORDER);
+        output = stringIndexer.fit(trainTable).transform(predictTable)[0];
+        predictedResult = 
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        verifyPredictionResult(expectedFreqDescPredictData, predictedResult);
+
+        // arbitrary
+        stringIndexer.setStringOrderType(StringIndexerParams.ARBITRARY_ORDER);
+        output = stringIndexer.fit(trainTable).transform(predictTable)[0];
+        predictedResult = 
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        Set<Integer> distinctStringsCol1 = new HashSet<>();
+        Set<Integer> distinctStringsCol2 = new HashSet<>();
+        int index;
+        for (Row r : predictedResult) {
+            index = (Integer) r.getField(2);
+            distinctStringsCol1.add(index);
+            assertTrue(index >= 0 && index <= 4);
+            index = (Integer) r.getField(3);
+            assertTrue(index >= 0 && index <= 3);
+            distinctStringsCol2.add(index);
+        }
+        assertEquals(3, distinctStringsCol1.size());
+        assertEquals(2, distinctStringsCol2.size());
+    }
+
+    @Test
+    @SuppressWarnings("unchecked")
+    public void testHandleInvalid() throws Exception {
+        StringIndexer stringIndexer =
+                new StringIndexer()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        
.setStringOrderType(StringIndexerParams.ALPHABET_ASC_ORDER);
+
+        Table output;
+        List<Row> expectedResult;
+
+        // keep invalid data

Review comment:
       nits: How about we always start a comment with upper-case letter and 
ends with a dot?

##########
File path: 
flink-ml-lib/src/test/java/org/apache/flink/ml/feature/stringindexer/IndexToStringModelTest.java
##########
@@ -0,0 +1,162 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.feature.stringindexer;
+
+import org.apache.flink.api.common.restartstrategy.RestartStrategies;
+import org.apache.flink.configuration.Configuration;
+import org.apache.flink.ml.util.StageTestUtils;
+import 
org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.test.util.AbstractTestBase;
+import org.apache.flink.types.Row;
+
+import org.apache.commons.collections.IteratorUtils;
+import org.junit.Before;
+import org.junit.Rule;
+import org.junit.Test;
+import org.junit.rules.TemporaryFolder;
+
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.List;
+
+import static org.junit.Assert.assertArrayEquals;
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.fail;
+
+/** Tests the {@link IndexToStringModel}. */
+public class IndexToStringModelTest extends AbstractTestBase {
+    @Rule public final TemporaryFolder tempFolder = new TemporaryFolder();
+
+    private StreamExecutionEnvironment env;
+    private StreamTableEnvironment tEnv;
+    private Table illegalPredictTable;
+    private Table predictTable;
+    private Table modelTable;
+
+    private final List<Row> expectedPrediction =
+            Arrays.asList(Row.of(0, 3, "a", "2.0"), Row.of(1, 2, "b", "1.0"));
+    private final String[][] stringArrays =
+            new String[][] {{"a", "b", "c", "d"}, {"-1.0", "0.0", "1.0", 
"2.0"}};
+
+    @Before
+    public void before() {
+        Configuration config = new Configuration();
+        
config.set(ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH, 
true);
+        env = StreamExecutionEnvironment.getExecutionEnvironment(config);
+        env.setParallelism(4);
+        env.enableCheckpointing(100);
+        env.setRestartStrategy(RestartStrategies.noRestart());
+        tEnv = StreamTableEnvironment.create(env);
+
+        modelTable =
+                tEnv.fromDataStream(env.fromElements(new 
StringIndexerModelData(stringArrays)))
+                        .as("stringArrays");
+        predictTable =
+                tEnv.fromDataStream(env.fromCollection(Arrays.asList(Row.of(0, 
3), Row.of(1, 2))))
+                        .as("inputCol1", "inputCol2");
+        illegalPredictTable =
+                tEnv.fromDataStream(
+                                env.fromCollection(
+                                        Arrays.asList(Row.of(0, 3), Row.of(1, 
2), Row.of(4, 1))))
+                        .as("inputCol1", "inputCol2");
+    }
+
+    @Test
+    public void testPredictParam() {
+        IndexToStringModel indexToStringModel =
+                new IndexToStringModel()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setModelData(modelTable);
+        Table output = indexToStringModel.transform(predictTable)[0];
+        assertEquals(
+                Arrays.asList("inputCol1", "inputCol2", "outputCol1", 
"outputCol2"),
+                output.getResolvedSchema().getColumnNames());
+    }
+
+    @Test
+    public void testIllegalInput() {
+        IndexToStringModel indexToStringModel =
+                new IndexToStringModel()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setModelData(modelTable);
+        Table output = indexToStringModel.transform(illegalPredictTable)[0];
+        try {
+            
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+            fail();
+        } catch (Exception e) {
+            assertEquals(
+                    "The input contains unseen index: 4.",
+                    
e.getCause().getCause().getCause().getCause().getCause().getMessage());
+        }
+    }
+
+    @Test
+    @SuppressWarnings("unchecked")
+    public void testPredict() throws Exception {
+        IndexToStringModel indexToStringModel =
+                new IndexToStringModel()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setModelData(modelTable);
+        Table output = indexToStringModel.transform(predictTable)[0];
+        List<Row> predictedResult =
+                
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        StringIndexerTest.verifyPredictionResult(expectedPrediction, 
predictedResult);
+    }
+
+    @Test
+    @SuppressWarnings("unchecked")
+    public void testSaveLoadAndPredict() throws Exception {
+        IndexToStringModel model =
+                new IndexToStringModel()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setModelData(modelTable);
+        model = StageTestUtils.saveAndReload(env, model, 
tempFolder.newFolder().getAbsolutePath());
+        assertEquals(
+                Collections.singletonList("stringArrays"),
+                model.getModelData()[0].getResolvedSchema().getColumnNames());
+        Table output = model.transform(predictTable)[0];
+        List<Row> predictedResult =
+                
IteratorUtils.toList(tEnv.toDataStream(output).executeAndCollect());
+        StringIndexerTest.verifyPredictionResult(expectedPrediction, 
predictedResult);
+    }
+
+    @Test
+    public void testGetModelData() throws Exception {
+        IndexToStringModel model =
+                new IndexToStringModel()
+                        .setInputCols("inputCol1", "inputCol2")
+                        .setOutputCols("outputCol1", "outputCol2")
+                        .setModelData(modelTable);
+
+        StringIndexerModelData modelData =
+                
StringIndexerModelData.getModelDataStream(model.getModelData()[0])
+                        .executeAndCollect()

Review comment:
       Should we replace `next()` with `IteratorUtils.toList(...)` for 
consistency with other existing tests?
   
   This approach would also verify that there is exactly one record in the 
model data stream in this test.
   
   Same for `StringIndexerTest`.

##########
File path: 
flink-ml-lib/src/main/java/org/apache/flink/ml/feature/stringindexer/StringIndexerModel.java
##########
@@ -0,0 +1,198 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.feature.stringindexer;
+
+import org.apache.flink.api.common.functions.RichFlatMapFunction;
+import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
+import org.apache.flink.api.common.typeinfo.TypeInformation;
+import org.apache.flink.api.java.typeutils.RowTypeInfo;
+import org.apache.flink.ml.api.Model;
+import org.apache.flink.ml.common.broadcast.BroadcastUtils;
+import org.apache.flink.ml.common.datastream.TableUtils;
+import org.apache.flink.ml.param.Param;
+import org.apache.flink.ml.util.ParamUtils;
+import org.apache.flink.ml.util.ReadWriteUtils;
+import org.apache.flink.streaming.api.datastream.DataStream;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.table.api.internal.TableImpl;
+import org.apache.flink.types.Row;
+import org.apache.flink.util.Collector;
+import org.apache.flink.util.Preconditions;
+
+import org.apache.commons.lang3.ArrayUtils;
+
+import java.io.IOException;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * A Model which transforms input string/numeric column(s) to integer 
column(s) using the model data
+ * computed by {@link StringIndexer}.
+ */
+public class StringIndexerModel
+        implements Model<StringIndexerModel>, 
StringIndexerModelParams<StringIndexerModel> {
+    private final Map<Param<?>, Object> paramMap = new HashMap<>();
+    private Table modelDataTable;
+
+    public StringIndexerModel() {
+        ParamUtils.initializeMapWithDefaultValues(paramMap, this);
+    }
+
+    @Override
+    public void save(String path) throws IOException {
+        ReadWriteUtils.saveMetadata(this, path);
+        ReadWriteUtils.saveModelData(
+                StringIndexerModelData.getModelDataStream(modelDataTable),
+                path,
+                new StringIndexerModelData.ModelDataEncoder());
+    }
+
+    public static StringIndexerModel load(StreamExecutionEnvironment env, 
String path)
+            throws IOException {
+        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
+        StringIndexerModel model = ReadWriteUtils.loadStageParam(path);
+        DataStream<StringIndexerModelData> modelData =
+                ReadWriteUtils.loadModelData(
+                        env, path, new 
StringIndexerModelData.ModelDataDecoder());
+        return model.setModelData(tEnv.fromDataStream(modelData));
+    }
+
+    @Override
+    public Map<Param<?>, Object> getParamMap() {
+        return paramMap;
+    }
+
+    @Override
+    public StringIndexerModel setModelData(Table... inputs) {
+        modelDataTable = inputs[0];
+        return this;
+    }
+
+    @Override
+    public Table[] getModelData() {
+        return new Table[] {modelDataTable};
+    }
+
+    @Override
+    @SuppressWarnings("unchecked, rawtypes")
+    public Table[] transform(Table... inputs) {
+        Preconditions.checkArgument(inputs.length == 1);
+        String[] inputCols = getInputCols();
+        String[] outputCols = getOutputCols();
+        Preconditions.checkArgument(inputCols.length == outputCols.length);
+        StreamTableEnvironment tEnv =
+                (StreamTableEnvironment) ((TableImpl) 
modelDataTable).getTableEnvironment();
+
+        final String broadcastModelKey = "broadcastModelKey";
+        DataStream<StringIndexerModelData> modelDataStream =
+                StringIndexerModelData.getModelDataStream(modelDataTable);
+        RowTypeInfo inputTypeInfo = 
TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
+        TypeInformation<?>[] outputTypes = new 
TypeInformation[outputCols.length];
+        Arrays.fill(outputTypes, BasicTypeInfo.INT_TYPE_INFO);
+        RowTypeInfo outputTypeInfo =
+                new RowTypeInfo(
+                        ArrayUtils.addAll(inputTypeInfo.getFieldTypes(), 
outputTypes),
+                        ArrayUtils.addAll(inputTypeInfo.getFieldNames(), 
getOutputCols()));
+        DataStream<Row> result =
+                BroadcastUtils.withBroadcastStream(
+                        
Collections.singletonList(tEnv.toDataStream(inputs[0])),
+                        Collections.singletonMap(broadcastModelKey, 
modelDataStream),
+                        inputList -> {
+                            DataStream inputData = inputList.get(0);
+                            return inputData.flatMap(
+                                    new String2Index(
+                                            broadcastModelKey, inputCols, 
getHandleInvalid()),
+                                    outputTypeInfo);
+                        });
+        return new Table[] {tEnv.fromDataStream(result)};
+    }
+
+    /** Maps the input columns to integer values according to the model data. 
*/
+    private static class String2Index extends RichFlatMapFunction<Row, Row> {
+        private HashMap<String, Integer>[] modelDataMap;
+        private final String broadcastModelKey;
+        private final String[] inputCols;
+        private final String handleInValid;
+
+        public String2Index(String broadcastModelKey, String[] inputCols, 
String handleInValid) {
+            this.broadcastModelKey = broadcastModelKey;
+            this.inputCols = inputCols;
+            this.handleInValid = handleInValid;
+        }
+
+        @Override
+        @SuppressWarnings("unchecked")
+        public void flatMap(Row input, Collector<Row> out) {
+            if (modelDataMap == null) {
+                modelDataMap = new HashMap[inputCols.length];
+                StringIndexerModelData modelData =
+                        (StringIndexerModelData)
+                                
getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0);
+                String[][] stringsArray = modelData.stringArrays;
+                for (int i = 0; i < stringsArray.length; i++) {
+                    int idx = 0;
+                    modelDataMap[i] = new HashMap<>(stringsArray[i].length);
+                    for (String string : stringsArray[i]) {
+                        modelDataMap[i].put(string, idx++);
+                    }
+                }
+            }
+            Row outputIndices = new Row(inputCols.length);
+            for (int i = 0; i < inputCols.length; i++) {
+                Object objVal = input.getField(inputCols[i]);
+                String stringVal;
+                if (objVal instanceof String) {
+                    stringVal = (String) objVal;
+                } else if (objVal instanceof Number) {
+                    stringVal = String.valueOf(objVal);
+                } else {
+                    throw new RuntimeException(
+                            "The input column only supports string and numeric 
type.");
+                }
+                if (modelDataMap[i].containsKey(stringVal)) {
+                    outputIndices.setField(i, modelDataMap[i].get(stringVal));
+                } else {
+                    switch (handleInValid) {
+                        case StringIndexerModelParams.SKIP_INVALID:
+                            return;
+                        case StringIndexerModelParams.ERROR_INVALID:
+                            throw new RuntimeException(
+                                    "The input contains unseen string: "
+                                            + stringVal
+                                            + ". To handle unseen strings, set 
Param "

Review comment:
       The error message seems incorrect. In order to `handle` the unseen 
strings, any one of three options work, right?
   
   I guess you mean that `To keep unseen strings in the output, set ...`. But 
if we say so, do we also need to say `To drop unseen strings from the output, 
set ...`? Would that be too verbose?
   
   It is probably simpler to just mention "see handleInvalid parameter for more 
options".

##########
File path: 
flink-ml-lib/src/test/java/org/apache/flink/ml/feature/stringindexer/IndexToStringModelTest.java
##########
@@ -0,0 +1,162 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.feature.stringindexer;
+
+import org.apache.flink.api.common.restartstrategy.RestartStrategies;
+import org.apache.flink.configuration.Configuration;
+import org.apache.flink.ml.util.StageTestUtils;
+import 
org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.test.util.AbstractTestBase;
+import org.apache.flink.types.Row;
+
+import org.apache.commons.collections.IteratorUtils;
+import org.junit.Before;
+import org.junit.Rule;
+import org.junit.Test;
+import org.junit.rules.TemporaryFolder;
+
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.List;
+
+import static org.junit.Assert.assertArrayEquals;
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.fail;
+
+/** Tests the {@link IndexToStringModel}. */
+public class IndexToStringModelTest extends AbstractTestBase {
+    @Rule public final TemporaryFolder tempFolder = new TemporaryFolder();
+
+    private StreamExecutionEnvironment env;
+    private StreamTableEnvironment tEnv;
+    private Table illegalPredictTable;

Review comment:
       It is not clear what `illegal` means here. Would it be more intuitive to 
name it `predictTableWithUnseenValues`?




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to