[ 
https://issues.apache.org/jira/browse/FLINK-5654?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15935239#comment-15935239
 ] 

ASF GitHub Bot commented on FLINK-5654:
---------------------------------------

Github user rtudoran commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3550#discussion_r107264081
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/DataStreamProcTimeAggregateGlobalWindowFunction.scala
 ---
    @@ -0,0 +1,106 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.table.runtime.aggregate
    +
    +import 
org.apache.flink.streaming.api.functions.windowing.RichAllWindowFunction
    +import org.apache.flink.types.Row
    +import org.apache.flink.util.Collector
    +import org.apache.flink.streaming.api.windowing.windows.Window
    +import org.apache.flink.configuration.Configuration
    +import org.apache.flink.table.functions.Accumulator
    +
    +import java.lang.Iterable
    +import org.apache.flink.table.functions.AggregateFunction
    +
    +/**
    +  * Computes the final aggregate value from incrementally computed 
aggreagtes.
    +  *
    +  * @param aggregates The aggregates to be computed
    +  * @param aggFields the fields on which to apply the aggregate.
    +  * @param forwardedFieldCount The fields to be carried from current row.
    +  */
    +class DataStreamProcTimeAggregateGlobalWindowFunction[W <: Window](
    --- End diff --
    
    @sunjincheng121 @fhueske 
    Thanks for the input and suggestion. As of now i followed the model from 
the Unounded Partiton/noPartition. I have finished acutally the implementation. 
However, when i run the tests i see that it crashes for the non-partition 
example
    then i checked better and it seems that it also crashes for the:
     UnboundedNonPartitionedProcessingOverProcessFunction.scala
    ..i do not understand how come
    
    
testUnboundNonPartitionedProcessingWindowWithRange(org.apache.flink.table.api.scala.stream.sql.SqlITCase)
  Time elapsed: 1.022 sec  <<< ERROR!
    org.apache.flink.runtime.client.JobExecutionException: Job execution failed.
        at 
org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$7.apply$mcV$sp(JobManager.scala:915)
        at 
org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$7.apply(JobManager.scala:858)
        at 
org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$7.apply(JobManager.scala:858)
        at 
scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
        at 
scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
        at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40)
        at 
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
        at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
        at 
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
        at 
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
        at 
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
    Caused by: java.lang.IllegalStateException: Serializer not yet initialized.
        at 
org.apache.flink.api.common.state.StateDescriptor.getSerializer(StateDescriptor.java:169)
        at 
org.apache.flink.api.common.state.ListStateDescriptor.getElementSerializer(ListStateDescriptor.java:93)
        at 
org.apache.flink.runtime.state.DefaultOperatorStateBackend.getOperatorState(DefaultOperatorStateBackend.java:110)
        at 
org.apache.flink.runtime.state.DefaultOperatorStateBackend.getOperatorState(DefaultOperatorStateBackend.java:91)
        at 
org.apache.flink.table.runtime.aggregate.UnboundedNonPartitionedProcessingOverProcessFunction.initializeState(UnboundedNonPartitionedProcessingOverProcessFunction.scala:102)
        at 
org.apache.flink.streaming.api.functions.util.StreamingFunctionUtils.tryRestoreFunction(StreamingFunctionUtils.java:178)
        at 
org.apache.flink.streaming.api.functions.util.StreamingFunctionUtils.restoreFunctionState(StreamingFunctionUtils.java:160)
        at 
org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator.initializeState(AbstractUdfStreamOperator.java:106)
        at 
org.apache.flink.streaming.api.operators.AbstractStreamOperator.initializeState(AbstractStreamOperator.java:242)
        at 
org.apache.flink.streaming.runtime.tasks.StreamTask.initializeOperators(StreamTask.java:681)
        at 
org.apache.flink.streaming.runtime.tasks.StreamTask.initializeState(StreamTask.java:669)
        at 
org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:251)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:670)
        at java.lang.Thread.run(Thread.java:745)


> Add processing time OVER RANGE BETWEEN x PRECEDING aggregation to SQL
> ---------------------------------------------------------------------
>
>                 Key: FLINK-5654
>                 URL: https://issues.apache.org/jira/browse/FLINK-5654
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Table API & SQL
>            Reporter: Fabian Hueske
>            Assignee: radu
>
> The goal of this issue is to add support for OVER RANGE aggregations on 
> processing time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT 
>   a, 
>   SUM(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' 
> HOUR PRECEDING AND CURRENT ROW) AS sumB,
>   MIN(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' 
> HOUR PRECEDING AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The PARTITION BY clause is optional (no partitioning results in single 
> threaded execution).
> - The ORDER BY clause may only have procTime() as parameter. procTime() is a 
> parameterless scalar function that just indicates processing time mode.
> - UNBOUNDED PRECEDING is not supported (see FLINK-5657)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some 
> of the restrictions are trivial to address, we can add the functionality in 
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with 
> RexOver expression).



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to