[ 
https://issues.apache.org/jira/browse/FLINK-5654?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15936220#comment-15936220
 ] 

ASF GitHub Bot commented on FLINK-5654:
---------------------------------------

Github user rtudoran commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3590#discussion_r107402043
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/ProcTimeBoundedProcessingOverProcessFunction.scala
 ---
    @@ -0,0 +1,141 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.flink.table.runtime.aggregate
    +
    +import org.apache.flink.api.common.state.{ListState, ListStateDescriptor}
    +import org.apache.flink.api.java.typeutils.RowTypeInfo
    +import org.apache.flink.configuration.Configuration
    +import org.apache.flink.runtime.state.{FunctionInitializationContext, 
FunctionSnapshotContext}
    +import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction
    +import org.apache.flink.streaming.api.functions.ProcessFunction
    +import org.apache.flink.table.functions.{Accumulator, AggregateFunction}
    +import org.apache.flink.types.Row
    +import org.apache.flink.util.{Collector, Preconditions}
    +import org.apache.flink.api.common.state.ValueState
    +import org.apache.flink.api.common.state.ValueStateDescriptor
    +import scala.util.control.Breaks._
    +
    +/**
    +  * Process Function used for the aggregate in partitioned bounded windows 
in
    +  * [[org.apache.flink.streaming.api.datastream.DataStream]]
    +  *
    +  * @param aggregates the list of all 
[[org.apache.flink.table.functions.AggregateFunction]]
    +  *                   used for this aggregation
    +  * @param aggFields  the position (in the input Row) of the input value 
for each aggregate
    +  * @param forwardedFieldCount Is used to indicate fields in the current 
element to forward
    +  * @param rowTypeInfo Is used to indicate the field schema
    +  * @param time_boundary Is used to indicate the processing time boundaries
    +  */
    +class ProcTimeBoundedProcessingOverProcessFunction(
    +    private val aggregates: Array[AggregateFunction[_]],
    +    private val aggFields: Array[Int],
    +    private val forwardedFieldCount: Int,
    +    private val rowTypeInfo: RowTypeInfo,
    +    private val time_boundary: Long)
    +  extends ProcessFunction[Row, Row] {
    +
    +  Preconditions.checkNotNull(aggregates)
    +  Preconditions.checkNotNull(aggFields)
    +  Preconditions.checkArgument(aggregates.length == aggFields.length)
    +
    +  private var accumulators: Row = _
    +  private var output: Row = _
    +  private var windowBuffer: ListState[Tuple2[Long,Row]] = null
    +  private var state: ValueState[Row] = _
    +
    +  
    +  override def open(config: Configuration) {
    +    output = new Row(forwardedFieldCount + aggregates.length)
    +    
    +    accumulators = new Row(aggregates.length)
    +    var i = 0
    +    while (i < aggregates.length) {
    +        accumulators.setField(i, aggregates(i).createAccumulator())
    +        i += 1
    +      } 
    +    
    +    // We keep the elements received in a list state 
    +    // together with the ingestion time in the operator
    +    val bufferDescriptor: ListStateDescriptor[Tuple2[Long,Row]] = 
    +    new ListStateDescriptor[Tuple2[Long,Row]]("windowBufferState", 
classOf[Tuple2[Long,Row]])
    +    windowBuffer = getRuntimeContext.getListState(bufferDescriptor)
    +
    +    val stateDescriptor: ValueStateDescriptor[Row] =
    +    new ValueStateDescriptor[Row]("overState", classOf[Row] , 
accumulators)      
    --- End diff --
    
    @fhueske  Fine for the correct usage of the type
    However, regarding not using this constructor and checking in the process 
function - i think this gives less performance. Basically we add an if 
condition that will be checked for every event that comes in the stream. 
Although an instruction is not big time wise - i guess we still aim to build 
for high performance. My suggestion would be to keep using the deprecated 
constructor (or alternatively to update the value directly...but definitely not 
put the check in processFunction) What do you think?


> Add processing time OVER RANGE BETWEEN x PRECEDING aggregation to SQL
> ---------------------------------------------------------------------
>
>                 Key: FLINK-5654
>                 URL: https://issues.apache.org/jira/browse/FLINK-5654
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Table API & SQL
>            Reporter: Fabian Hueske
>            Assignee: radu
>
> The goal of this issue is to add support for OVER RANGE aggregations on 
> processing time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT 
>   a, 
>   SUM(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' 
> HOUR PRECEDING AND CURRENT ROW) AS sumB,
>   MIN(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' 
> HOUR PRECEDING AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The PARTITION BY clause is optional (no partitioning results in single 
> threaded execution).
> - The ORDER BY clause may only have procTime() as parameter. procTime() is a 
> parameterless scalar function that just indicates processing time mode.
> - UNBOUNDED PRECEDING is not supported (see FLINK-5657)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some 
> of the restrictions are trivial to address, we can add the functionality in 
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with 
> RexOver expression).



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to