[
https://issues.apache.org/jira/browse/HIVE-10153?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Stamatis Zampetakis updated HIVE-10153:
---------------------------------------
I cleared the fixVersion field since this ticket is still open. Please review
this ticket and if the fix is already committed to a specific version please
set the version accordingly and mark the ticket as RESOLVED.
According to the [JIRA
guidelines|https://cwiki.apache.org/confluence/display/Hive/HowToContribute]
the fixVersion should be set only when the issue is resolved/closed.
> CBO (Calcite Return Path): TPC-DS Q15 in-efficient join order
> --------------------------------------------------------------
>
> Key: HIVE-10153
> URL: https://issues.apache.org/jira/browse/HIVE-10153
> Project: Hive
> Issue Type: Bug
> Components: CBO
> Affects Versions: cbo-branch
> Reporter: Mostafa Mokhtar
> Assignee: Laljo John Pullokkaran
> Priority: Major
> Fix For: cbo-branch
>
>
> TPC-DS Q15 joins catalog_sales with date_dim last where it should be the
> first join.
> Query
> {code}
> select ca_zip
> ,sum(cs_sales_price)
> from catalog_sales
> ,customer
> ,customer_address
> ,date_dim
> where catalog_sales.cs_bill_customer_sk = customer.c_customer_sk
> and customer.c_current_addr_sk = customer_address.ca_address_sk
> and ( substr(ca_zip,1,5) in ('85669', '86197','88274','83405','86475',
> '85392', '85460', '80348', '81792')
> or customer_address.ca_state in ('CA','WA','GA')
> or catalog_sales.cs_sales_price > 500)
> and catalog_sales.cs_sold_date_sk = date_dim.d_date_sk
> and date_dim.d_qoy = 2 and date_dim.d_year = 2000
> group by ca_zip
> order by ca_zip
> limit 100;
> {code}
> Logical plan
> {code}
> HiveSort(fetch=[100]): rowcount = 7171.0, cumulative cost =
> {7.507729983730065E8 rows, 7.553113550983669E8 cpu, 9.08546638062188E10 io},
> id = 2207
> HiveSort(sort0=[$0], dir0=[ASC]): rowcount = 7171.0, cumulative cost =
> {7.502636967200102E8 rows, 7.553041840983669E8 cpu, 9.08546638062188E10 io},
> id = 2205
> HiveAggregate(group=[{0}], agg#0=[sum($1)]): rowcount = 7171.0,
> cumulative cost = {7.497543950670139E8 rows, 7.552970130983669E8 cpu,
> 9.08546638062188E10 io}, id = 2203
> HiveProject($f0=[$7], $f1=[$1]): rowcount = 272862.9537571146,
> cumulative cost = {7.494815321132567E8 rows, 7.518816625578996E8 cpu,
> 8.75951724E10 io}, id = 2201
> HiveJoin(condition=[=($2, $8)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{1.36661031991844E8 rows,
> 1.3666116243648687E8 cpu, 0.0 io}]): rowcount = 272862.9537571146, cumulative
> cost = {7.494815321132567E8 rows, 7.518816625578996E8 cpu, 8.75951724E10 io},
> id = 2242
> HiveFilter(condition=[OR(in(substr($7, 1, 5), '85669', '86197',
> '88274', '83405', '86475', '85392', '85460', '80348', '81792'), in($6, 'CA',
> 'WA', 'GA'), >($1, 5E2))]): rowcount = 1.3666090154720113E8, cumulative cost
> = {6.128205001214128E8 rows, 6.152205001214128E8 cpu, 8.75951724E10 io}, id =
> 2195
> HiveJoin(condition=[=($4, $5)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{3.246707731214128E8 rows,
> 3.254707731214128E8 cpu, 4.91951724E10 io}]): rowcount =
> 3.6605287632468826E8, cumulative cost = {6.128205001214128E8 rows,
> 6.152205001214128E8 cpu, 8.75951724E10 io}, id = 2238
> HiveJoin(condition=[=($0, $3)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{2.88149727E8 rows, 2.89749727E8 cpu, 3.84E10
> io}]): rowcount = 3.238707731214128E8, cumulative cost = {2.88149727E8 rows,
> 2.89749727E8 cpu, 3.84E10 io}, id = 2222
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.catalog_sales]]):
> rowcount = 2.86549727E8, cumulative cost = {0}, id = 2134
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer]]): rowcount =
> 1600000.0, cumulative cost = {0}, id = 2135
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer_address]]):
> rowcount = 800000.0, cumulative cost = {0}, id = 2137
> HiveFilter(condition=[AND(=($2, 2), =($1, 2000))]): rowcount =
> 130.44464285714287, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 2197
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.date_dim]]): rowcount =
> 73049.0, cumulative cost = {0}, id = 2140
> {code}
> — Re-write
> {code}
> with cs as
> ( select cs_sales_price,cs_bill_customer_sk
> from catalog_sales
> ,date_dim
> where
> cs_sold_date_sk = d_date_sk
> and date_dim.d_qoy = 2 and d_year = 2000)
> select ca_zip
> ,sum(cs_sales_price)
> from cs
> ,customer
> ,customer_address
> where cs.cs_bill_customer_sk = customer.c_customer_sk
> and customer.c_current_addr_sk = customer_address.ca_address_sk
> and ( substr(ca_zip,1,5) in ('85669', '86197','88274','83405','86475',
> '85392', '85460', '80348', '81792')
> or customer_address.ca_state in ('CA','WA','GA')
> or cs.cs_sales_price > 500)
> group by ca_zip
> order by ca_zip
> limit 100
> {code}
> — plan for re-write
> {code}
> HiveSort(fetch=[100]): rowcount = 7171.0, cumulative cost =
> {2.9146011517152977E8 rows, 2.949706092384584E8 cpu, 3.261369809075945E9 io},
> id = 1990
> HiveSort(sort0=[$0], dir0=[ASC]): rowcount = 7171.0, cumulative cost =
> {2.909508135185335E8 rows, 2.949634382384584E8 cpu, 3.261369809075945E9 io},
> id = 1988
> HiveAggregate(group=[{0}], agg#0=[sum($1)]): rowcount = 7171.0,
> cumulative cost = {2.904415118655373E8 rows, 2.949562672384584E8 cpu,
> 3.261369809075945E9 io}, id = 1986
> HiveProject($f0=[$6], $f1=[$0]): rowcount = 272862.9537571146,
> cumulative cost = {2.901686489117802E8 rows, 2.915409166979911E8 cpu,
> 1878402.8571428573 io}, id = 1984
> HiveFilter(condition=[OR(in(substr($6, 1, 5), '85669', '86197',
> '88274', '83405', '86475', '85392', '85460', '80348', '81792'), in($5, 'CA',
> 'WA', 'GA'), >($0, 5E2))]): rowcount = 272862.9537571146, cumulative cost =
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io},
> id = 1982
> HiveProject(cs_sales_price=[$5], cs_bill_customer_sk=[$6],
> c_customer_sk=[$3], c_current_addr_sk=[$4], ca_address_sk=[$0],
> ca_state=[$1], ca_zip=[$2]): rowcount = 730876.7023664336, cumulative cost =
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io},
> id = 2030
> HiveJoin(condition=[=($4, $0)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{1446654.1255692376 rows, 2246654.1255692374
> cpu, 0.0 io}]): rowcount = 730876.7023664336, cumulative cost =
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io},
> id = 2028
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer_address]]):
> rowcount = 800000.0, cumulative cost = {0}, id = 1917
> HiveJoin(condition=[=($3, $0)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{2172137.341568095 rows, 2744274.6831361903
> cpu, 0.0 io}]): rowcount = 646654.1255692376, cumulative cost =
> {2.8872199478621095E8 rows, 2.8929426257242185E8 cpu, 1878402.8571428573 io},
> id = 2012
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer]]): rowcount =
> 1600000.0, cumulative cost = {0}, id = 1915
> HiveProject(cs_sales_price=[$1], cs_bill_customer_sk=[$0]):
> rowcount = 572137.341568095, cumulative cost = {2.8654985744464284E8 rows,
> 2.865499878892857E8 cpu, 1878402.8571428573 io}, id = 1976
> HiveJoin(condition=[=($2, $3)], joinType=[inner],
> joinAlgorithm=[map_join], cost=[{2.8654985744464284E8 rows,
> 2.865499878892857E8 cpu, 1878402.8571428573 io}]): rowcount =
> 572137.341568095, cumulative cost = {2.8654985744464284E8 rows,
> 2.865499878892857E8 cpu, 1878402.8571428573 io}, id = 2005
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.catalog_sales]]):
> rowcount = 2.86549727E8, cumulative cost = {0}, id = 1910
> HiveFilter(condition=[AND(=($2, 2), =($1, 2000))]):
> rowcount = 130.44464285714287, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io},
> id = 1972
>
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.date_dim]]): rowcount =
> 73049.0, cumulative cost = {0}, id = 1911
> {code}
--
This message was sent by Atlassian Jira
(v8.20.10#820010)