[ 
https://issues.apache.org/jira/browse/HIVE-10153?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Stamatis Zampetakis updated HIVE-10153:
---------------------------------------

I cleared the fixVersion field since this ticket is not resolved. Please review 
this ticket and if the fix is already committed to a specific version please 
set the version accordingly and mark the ticket as RESOLVED.

According to the JIRA guidelines 
(https://cwiki.apache.org/confluence/display/Hive/HowToContribute) the 
fixVersion should be set only when the issue is resolved/closed.

> CBO (Calcite Return Path): TPC-DS Q15 in-efficient join order 
> --------------------------------------------------------------
>
>                 Key: HIVE-10153
>                 URL: https://issues.apache.org/jira/browse/HIVE-10153
>             Project: Hive
>          Issue Type: Bug
>          Components: CBO
>    Affects Versions: cbo-branch
>            Reporter: Mostafa Mokhtar
>            Assignee: Laljo John Pullokkaran
>            Priority: Major
>             Fix For: cbo-branch
>
>
> TPC-DS Q15 joins catalog_sales with date_dim last where it should be the 
> first join.
> Query 
> {code}
> select  ca_zip
>        ,sum(cs_sales_price)
>  from catalog_sales
>      ,customer
>      ,customer_address
>      ,date_dim
>  where catalog_sales.cs_bill_customer_sk = customer.c_customer_sk
>   and customer.c_current_addr_sk = customer_address.ca_address_sk 
>   and ( substr(ca_zip,1,5) in ('85669', '86197','88274','83405','86475',
>                                    '85392', '85460', '80348', '81792')
>        or customer_address.ca_state in ('CA','WA','GA')
>        or catalog_sales.cs_sales_price > 500)
>   and catalog_sales.cs_sold_date_sk = date_dim.d_date_sk
>   and date_dim.d_qoy = 2 and date_dim.d_year = 2000
>  group by ca_zip
>  order by ca_zip
>  limit 100;
> {code}
> Logical plan 
> {code}
> HiveSort(fetch=[100]): rowcount = 7171.0, cumulative cost = 
> {7.507729983730065E8 rows, 7.553113550983669E8 cpu, 9.08546638062188E10 io}, 
> id = 2207
>   HiveSort(sort0=[$0], dir0=[ASC]): rowcount = 7171.0, cumulative cost = 
> {7.502636967200102E8 rows, 7.553041840983669E8 cpu, 9.08546638062188E10 io}, 
> id = 2205
>     HiveAggregate(group=[{0}], agg#0=[sum($1)]): rowcount = 7171.0, 
> cumulative cost = {7.497543950670139E8 rows, 7.552970130983669E8 cpu, 
> 9.08546638062188E10 io}, id = 2203
>       HiveProject($f0=[$7], $f1=[$1]): rowcount = 272862.9537571146, 
> cumulative cost = {7.494815321132567E8 rows, 7.518816625578996E8 cpu, 
> 8.75951724E10 io}, id = 2201
>         HiveJoin(condition=[=($2, $8)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{1.36661031991844E8 rows, 
> 1.3666116243648687E8 cpu, 0.0 io}]): rowcount = 272862.9537571146, cumulative 
> cost = {7.494815321132567E8 rows, 7.518816625578996E8 cpu, 8.75951724E10 io}, 
> id = 2242
>           HiveFilter(condition=[OR(in(substr($7, 1, 5), '85669', '86197', 
> '88274', '83405', '86475', '85392', '85460', '80348', '81792'), in($6, 'CA', 
> 'WA', 'GA'), >($1, 5E2))]): rowcount = 1.3666090154720113E8, cumulative cost 
> = {6.128205001214128E8 rows, 6.152205001214128E8 cpu, 8.75951724E10 io}, id = 
> 2195
>             HiveJoin(condition=[=($4, $5)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{3.246707731214128E8 rows, 
> 3.254707731214128E8 cpu, 4.91951724E10 io}]): rowcount = 
> 3.6605287632468826E8, cumulative cost = {6.128205001214128E8 rows, 
> 6.152205001214128E8 cpu, 8.75951724E10 io}, id = 2238
>               HiveJoin(condition=[=($0, $3)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{2.88149727E8 rows, 2.89749727E8 cpu, 3.84E10 
> io}]): rowcount = 3.238707731214128E8, cumulative cost = {2.88149727E8 rows, 
> 2.89749727E8 cpu, 3.84E10 io}, id  = 2222
>                 
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.catalog_sales]]): 
> rowcount = 2.86549727E8, cumulative cost = {0}, id = 2134
>                 
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer]]): rowcount = 
> 1600000.0, cumulative cost = {0}, id = 2135
>               
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer_address]]): 
> rowcount = 800000.0, cumulative cost = {0}, id = 2137
>           HiveFilter(condition=[AND(=($2, 2), =($1, 2000))]): rowcount = 
> 130.44464285714287, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 2197
>             
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.date_dim]]): rowcount = 
> 73049.0, cumulative cost = {0}, id = 2140
> {code}
> — Re-write 
> {code}
> with cs as 
>  ( select cs_sales_price,cs_bill_customer_sk
>  from catalog_sales
>      ,date_dim
> where      
>   cs_sold_date_sk = d_date_sk
>   and date_dim.d_qoy = 2 and d_year = 2000)
>   select  ca_zip
>        ,sum(cs_sales_price)
>  from cs
>      ,customer
>      ,customer_address
>  where cs.cs_bill_customer_sk = customer.c_customer_sk
>   and customer.c_current_addr_sk = customer_address.ca_address_sk 
>   and ( substr(ca_zip,1,5) in ('85669', '86197','88274','83405','86475',
>                                    '85392', '85460', '80348', '81792')
>        or customer_address.ca_state in ('CA','WA','GA')
>        or cs.cs_sales_price > 500)
>  group by ca_zip
>  order by ca_zip
>  limit 100
>  {code}
> — plan for re-write 
> {code}
> HiveSort(fetch=[100]): rowcount = 7171.0, cumulative cost = 
> {2.9146011517152977E8 rows, 2.949706092384584E8 cpu, 3.261369809075945E9 io}, 
> id = 1990
>   HiveSort(sort0=[$0], dir0=[ASC]): rowcount = 7171.0, cumulative cost = 
> {2.909508135185335E8 rows, 2.949634382384584E8 cpu, 3.261369809075945E9 io}, 
> id = 1988
>     HiveAggregate(group=[{0}], agg#0=[sum($1)]): rowcount = 7171.0, 
> cumulative cost = {2.904415118655373E8 rows, 2.949562672384584E8 cpu, 
> 3.261369809075945E9 io}, id = 1986
>       HiveProject($f0=[$6], $f1=[$0]): rowcount = 272862.9537571146, 
> cumulative cost = {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 
> 1878402.8571428573 io}, id = 1984
>         HiveFilter(condition=[OR(in(substr($6, 1, 5), '85669', '86197', 
> '88274', '83405', '86475', '85392', '85460', '80348', '81792'), in($5, 'CA', 
> 'WA', 'GA'), >($0, 5E2))]): rowcount = 272862.9537571146, cumulative cost = 
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io}, 
> id = 1982
>           HiveProject(cs_sales_price=[$5], cs_bill_customer_sk=[$6], 
> c_customer_sk=[$3], c_current_addr_sk=[$4], ca_address_sk=[$0], 
> ca_state=[$1], ca_zip=[$2]): rowcount = 730876.7023664336, cumulative cost = 
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io}, 
> id = 2030
>             HiveJoin(condition=[=($4, $0)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{1446654.1255692376 rows, 2246654.1255692374 
> cpu, 0.0 io}]): rowcount = 730876.7023664336, cumulative cost = 
> {2.901686489117802E8 rows, 2.915409166979911E8 cpu, 1878402.8571428573 io}, 
> id = 2028
>               
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer_address]]): 
> rowcount = 800000.0, cumulative cost = {0}, id = 1917
>               HiveJoin(condition=[=($3, $0)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{2172137.341568095 rows, 2744274.6831361903 
> cpu, 0.0 io}]): rowcount = 646654.1255692376, cumulative cost = 
> {2.8872199478621095E8 rows, 2.8929426257242185E8 cpu, 1878402.8571428573 io}, 
> id = 2012
>                 
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.customer]]): rowcount = 
> 1600000.0, cumulative cost = {0}, id = 1915
>                 HiveProject(cs_sales_price=[$1], cs_bill_customer_sk=[$0]): 
> rowcount = 572137.341568095, cumulative cost = {2.8654985744464284E8 rows, 
> 2.865499878892857E8 cpu, 1878402.8571428573 io}, id = 1976
>                   HiveJoin(condition=[=($2, $3)], joinType=[inner], 
> joinAlgorithm=[map_join], cost=[{2.8654985744464284E8 rows, 
> 2.865499878892857E8 cpu, 1878402.8571428573 io}]): rowcount = 
> 572137.341568095, cumulative cost = {2.8654985744464284E8 rows, 
> 2.865499878892857E8 cpu, 1878402.8571428573 io}, id = 2005
>                     
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.catalog_sales]]): 
> rowcount = 2.86549727E8, cumulative cost = {0}, id = 1910
>                     HiveFilter(condition=[AND(=($2, 2), =($1, 2000))]): 
> rowcount = 130.44464285714287, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, 
> id = 1972
>                       
> HiveTableScan(table=[[tpcds_bin_partitioned_orc_200_1.date_dim]]): rowcount = 
> 73049.0, cumulative cost = {0}, id = 1911
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to