aokolnychyi commented on a change in pull request #3171:
URL: https://github.com/apache/iceberg/pull/3171#discussion_r715731699



##########
File path: spark3/src/main/java/org/apache/iceberg/spark/source/SparkWrite.java
##########
@@ -538,68 +543,128 @@ protected WriterFactory(Broadcast<Table> tableBroadcast, 
FileFormat format, long
     @Override
     public DataWriter<InternalRow> createWriter(int partitionId, long taskId, 
long epochId) {
       Table table = tableBroadcast.value();
-
-      OutputFileFactory fileFactory = OutputFileFactory.builderFor(table, 
partitionId, taskId).format(format).build();
-      SparkAppenderFactory appenderFactory = 
SparkAppenderFactory.builderFor(table, writeSchema, dsSchema).build();
-
       PartitionSpec spec = table.spec();
       FileIO io = table.io();
 
+      OutputFileFactory fileFactory = OutputFileFactory.builderFor(table, 
partitionId, taskId)
+          .format(format)
+          .build();
+      SparkFileWriterFactory writerFactory = 
SparkFileWriterFactory.builderFor(table)
+          .dataFileFormat(format)
+          .dataSchema(writeSchema)
+          .dataSparkType(dsSchema)
+          .build();
+
       if (spec.isUnpartitioned()) {
-        return new Unpartitioned3Writer(spec, format, appenderFactory, 
fileFactory, io, targetFileSize);
+        ClusteredDataWriter<InternalRow> dataWriter = new 
ClusteredDataWriter<>(
+            writerFactory, fileFactory, io,
+            format, targetFileSize);
+        return new UnpartitionedDataWriter(dataWriter, io, spec);
+
       } else if (partitionedFanoutEnabled) {
-        return new PartitionedFanout3Writer(
-            spec, format, appenderFactory, fileFactory, io, targetFileSize, 
writeSchema, dsSchema);
+        FanoutDataWriter<InternalRow> dataWriter = new FanoutDataWriter<>(
+            writerFactory, fileFactory, io,
+            format, targetFileSize);
+        return new PartitionedDataWriter(dataWriter, io, spec, writeSchema, 
dsSchema);
+
       } else {
-        return new Partitioned3Writer(
-            spec, format, appenderFactory, fileFactory, io, targetFileSize, 
writeSchema, dsSchema);
+        ClusteredDataWriter<InternalRow> dataWriter = new 
ClusteredDataWriter<>(
+            writerFactory, fileFactory, io,
+            format, targetFileSize);
+        return new PartitionedDataWriter(dataWriter, io, spec, writeSchema, 
dsSchema);
       }
     }
   }
 
-  private static class Unpartitioned3Writer extends 
UnpartitionedWriter<InternalRow>
-      implements DataWriter<InternalRow> {
-    Unpartitioned3Writer(PartitionSpec spec, FileFormat format, 
SparkAppenderFactory appenderFactory,
-                         OutputFileFactory fileFactory, FileIO io, long 
targetFileSize) {
-      super(spec, format, appenderFactory, fileFactory, io, targetFileSize);
+  // TODO: why the old implementation throws throwFailureWhenFinished()?

Review comment:
       I think it is purely a data writer abort, which is responsible for 
writing data for a single task and it looks like Spark handles all exceptions 
gracefully for such cases.
   
   If I were to implement this from scratch, I'd probably go for a warning and 
suppression. However, I am also worried about changing the behavior that worked 
so far :) 




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to