[ https://issues.apache.org/jira/browse/MADLIB-1454?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Frank McQuillan updated MADLIB-1454: ------------------------------------ Fix Version/s: v1.18.0 > DL - Write so far best to console for autoML methods > ----------------------------------------------------- > > Key: MADLIB-1454 > URL: https://issues.apache.org/jira/browse/MADLIB-1454 > Project: Apache MADlib > Issue Type: Improvement > Components: Deep Learning > Reporter: Frank McQuillan > Assignee: Advitya Gemawat > Priority: Minor > Fix For: v1.18.0 > > > For Hyperband, write the "best so far" to the console so that user knows how > things are progressing. > Note need to keep track of global best, it might not be the one from the last > iteration. > Change console output from: > {code} > INFO: *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 > iterations *** > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 1: 9.76507210732 sec > DETAIL: > Training set after iteration 1: > mst_key=2: metric=0.683333337307, loss=0.626947939396 > mst_key=8: metric=0.683333337307, loss=0.556752383709 > mst_key=3: metric=0.683333337307, loss=0.604624867439 > mst_key=6: metric=0.324999988079, loss=1.01775479317 > mst_key=1: metric=0.691666662693, loss=0.918690085411 > mst_key=7: metric=0.324999988079, loss=1.09102141857 > mst_key=9: metric=0.683333337307, loss=0.615454554558 > mst_key=4: metric=0.774999976158, loss=0.571036159992 > mst_key=5: metric=0.324999988079, loss=1.10194396973 > Validation set after iteration 1: > mst_key=2: metric=0.600000023842, loss=0.67598927021 > mst_key=8: metric=0.600000023842, loss=0.62441021204 > mst_key=3: metric=0.600000023842, loss=0.669852972031 > mst_key=6: metric=0.366666674614, loss=0.984160840511 > mst_key=1: metric=0.600000023842, loss=0.923334658146 > mst_key=7: metric=0.366666674614, loss=1.07771503925 > mst_key=9: metric=0.600000023842, loss=0.699421286583 > mst_key=4: metric=0.866666674614, loss=0.607381045818 > mst_key=5: metric=0.366666674614, loss=1.09954810143 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 > configs under bracket=1 & round=0 with 3 iterations *** > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 1: 4.84015893936 sec > DETAIL: > Training set after iteration 1: > mst_key=8: metric=0.925000011921, loss=0.353324443102 > mst_key=4: metric=0.949999988079, loss=0.424594521523 > mst_key=11: metric=0.675000011921, loss=0.846702694893 > mst_key=3: metric=0.808333337307, loss=0.382121056318 > mst_key=12: metric=0.916666686535, loss=0.384196609259 > mst_key=10: metric=0.683333337307, loss=0.701473772526 > Validation set after iteration 1: > mst_key=8: metric=0.933333337307, loss=0.42084941268 > mst_key=4: metric=0.933333337307, loss=0.476406633854 > mst_key=11: metric=0.600000023842, loss=0.854079544544 > mst_key=3: metric=0.899999976158, loss=0.417265832424 > mst_key=12: metric=0.899999976158, loss=0.450416505337 > mst_key=10: metric=0.600000023842, loss=0.728042304516 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 2: 4.80181288719 sec > DETAIL: > Training set after iteration 2: > mst_key=8: metric=0.941666662693, loss=0.286089539528 > mst_key=4: metric=0.925000011921, loss=0.373028248549 > mst_key=11: metric=0.683333337307, loss=0.609232187271 > mst_key=3: metric=0.833333313465, loss=0.291878581047 > mst_key=12: metric=0.908333361149, loss=0.300016224384 > mst_key=10: metric=0.983333349228, loss=0.382896214724 > Validation set after iteration 2: > mst_key=8: metric=0.933333337307, loss=0.338641613722 > mst_key=4: metric=1.0, loss=0.436057478189 > mst_key=11: metric=0.600000023842, loss=0.658753097057 > mst_key=3: metric=0.766666650772, loss=0.339546382427 > mst_key=12: metric=0.933333337307, loss=0.341486483812 > mst_key=10: metric=1.0, loss=0.442664504051 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 3: 5.17401909828 sec > DETAIL: > Training set after iteration 3: > mst_key=8: metric=0.966666638851, loss=0.196135208011 > mst_key=4: metric=0.958333313465, loss=0.243382230401 > mst_key=11: metric=0.941666662693, loss=0.395315974951 > mst_key=3: metric=0.966666638851, loss=0.171766787767 > mst_key=12: metric=0.866666674614, loss=0.283820331097 > mst_key=10: metric=0.833333313465, loss=0.313775897026 > Validation set after iteration 3: > mst_key=8: metric=0.966666638851, loss=0.214255988598 > mst_key=4: metric=1.0, loss=0.268849998713 > mst_key=11: metric=0.899999976158, loss=0.45996800065 > mst_key=3: metric=1.0, loss=0.157373458147 > mst_key=12: metric=0.800000011921, loss=0.340971261263 > mst_key=10: metric=0.766666650772, loss=0.365937292576 > CONTEXT: PL/Python function "madlib_keras_automl" > {code} > to > {code} > INFO: *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 > iterations *** > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 1: 9.76507210732 sec > DETAIL: > Training set after iteration 1: > mst_key=2: metric=0.683333337307, loss=0.626947939396 > mst_key=8: metric=0.683333337307, loss=0.556752383709 > mst_key=3: metric=0.683333337307, loss=0.604624867439 > mst_key=6: metric=0.324999988079, loss=1.01775479317 > mst_key=1: metric=0.691666662693, loss=0.918690085411 > mst_key=7: metric=0.324999988079, loss=1.09102141857 > mst_key=9: metric=0.683333337307, loss=0.615454554558 > mst_key=4: metric=0.774999976158, loss=0.571036159992 > mst_key=5: metric=0.324999988079, loss=1.1019439697 > Validation set after iteration 1: > mst_key=2: metric=0.600000023842, loss=0.67598927021 > mst_key=8: metric=0.600000023842, loss=0.62441021204 > mst_key=3: metric=0.600000023842, loss=0.669852972031 > mst_key=6: metric=0.366666674614, loss=0.984160840511 > mst_key=1: metric=0.600000023842, loss=0.923334658146 > mst_key=7: metric=0.366666674614, loss=1.07771503925 > mst_key=9: metric=0.600000023842, loss=0.699421286583 > mst_key=4: metric=0.866666674614, loss=0.607381045818 > mst_key=5: metric=0.366666674614, loss=1.09954810143 > Best training metric so far: > mst_key=4: metric=0.774999976158, loss=0.571036159992 > Best validation metric so far: > mst_key=4: metric=0.866666674614, loss=0.607381045818 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 > configs under bracket=1 & round=0 with 3 iterations *** > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 1: 4.84015893936 sec > DETAIL: > Training set after iteration 1: > mst_key=8: metric=0.925000011921, loss=0.353324443102 > mst_key=4: metric=0.949999988079, loss=0.424594521523 > mst_key=11: metric=0.675000011921, loss=0.846702694893 > mst_key=3: metric=0.808333337307, loss=0.382121056318 > mst_key=12: metric=0.916666686535, loss=0.384196609259 > mst_key=10: metric=0.683333337307, loss=0.701473772526 > Best training metric in iteration 1: > mst_key=4: metric=0.949999988079, loss=0.424594521523 > Validation set after iteration 1: > mst_key=8: metric=0.933333337307, loss=0.42084941268 > mst_key=4: metric=0.933333337307, loss=0.476406633854 > mst_key=11: metric=0.600000023842, loss=0.854079544544 > mst_key=3: metric=0.899999976158, loss=0.417265832424 > mst_key=12: metric=0.899999976158, loss=0.450416505337 > mst_key=10: metric=0.600000023842, loss=0.728042304516 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 2: 4.80181288719 sec > DETAIL: > Training set after iteration 2: > mst_key=8: metric=0.941666662693, loss=0.286089539528 > mst_key=4: metric=0.925000011921, loss=0.373028248549 > mst_key=11: metric=0.683333337307, loss=0.609232187271 > mst_key=3: metric=0.833333313465, loss=0.291878581047 > mst_key=12: metric=0.908333361149, loss=0.300016224384 > mst_key=10: metric=0.983333349228, loss=0.382896214724 > Validation set after iteration 2: > mst_key=8: metric=0.933333337307, loss=0.338641613722 > mst_key=4: metric=1.0, loss=0.436057478189 > mst_key=11: metric=0.600000023842, loss=0.658753097057 > mst_key=3: metric=0.766666650772, loss=0.339546382427 > mst_key=12: metric=0.933333337307, loss=0.341486483812 > mst_key=10: metric=1.0, loss=0.442664504051 > CONTEXT: PL/Python function "madlib_keras_automl" > INFO: > Time for training in iteration 3: 5.17401909828 sec > DETAIL: > Training set after iteration 3: > mst_key=8: metric=0.966666638851, loss=0.196135208011 > mst_key=4: metric=0.958333313465, loss=0.243382230401 > mst_key=11: metric=0.941666662693, loss=0.395315974951 > mst_key=3: metric=0.966666638851, loss=0.171766787767 > mst_key=12: metric=0.866666674614, loss=0.283820331097 > mst_key=10: metric=0.833333313465, loss=0.313775897026 > Validation set after iteration 3: > mst_key=8: metric=0.966666638851, loss=0.214255988598 > mst_key=4: metric=1.0, loss=0.268849998713 > mst_key=11: metric=0.899999976158, loss=0.45996800065 > mst_key=3: metric=1.0, loss=0.157373458147 > mst_key=12: metric=0.800000011921, loss=0.340971261263 > mst_key=10: metric=0.766666650772, loss=0.365937292576 > Best training metric so far: > mst_key=8: metric=0.966666638851, loss=0.196135208011 > Best validation metric so far: > mst_key=8: metric=0.966666638851, loss=0.214255988598 > CONTEXT: PL/Python function "madlib_keras_automl" > {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)