[ 
https://issues.apache.org/jira/browse/SPARK-1405?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14271700#comment-14271700
 ] 

Joseph K. Bradley commented on SPARK-1405:
------------------------------------------

That's great to hear that online variational has worked well for you so far.  
As far as API design, I agree that the changes to the model API would be small 
if any.  I'm not as sure about the Estimator (algorithm) API, but it could 
probably follow existing streaming ML algorithms.

> parallel Latent Dirichlet Allocation (LDA) atop of spark in MLlib
> -----------------------------------------------------------------
>
>                 Key: SPARK-1405
>                 URL: https://issues.apache.org/jira/browse/SPARK-1405
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>            Reporter: Xusen Yin
>            Assignee: Guoqiang Li
>            Priority: Critical
>              Labels: features
>         Attachments: performance_comparison.png
>
>   Original Estimate: 336h
>  Remaining Estimate: 336h
>
> Latent Dirichlet Allocation (a.k.a. LDA) is a topic model which extracts 
> topics from text corpus. Different with current machine learning algorithms 
> in MLlib, instead of using optimization algorithms such as gradient desent, 
> LDA uses expectation algorithms such as Gibbs sampling. 
> In this PR, I prepare a LDA implementation based on Gibbs sampling, with a 
> wholeTextFiles API (solved yet), a word segmentation (import from Lucene), 
> and a Gibbs sampling core.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to