[ 
https://issues.apache.org/jira/browse/SPARK-1405?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14278453#comment-14278453
 ] 

Guoqiang Li commented on SPARK-1405:
------------------------------------

We can use the demo scripts in word2vec to get the same corpus. 
{code}
normalize_text() {
  awk '{print tolower($0);}' | sed -e "s/’/'/g" -e "s/′/'/g" -e "s/''/ /g" -e 
"s/'/ ' /g" -e "s/“/\"/g" -e "s/”/\"/g" \
  -e 's/"/ " /g' -e 's/\./ \. /g' -e 's/<br \/>/ /g' -e 's/, / , /g' -e 's/(/ ( 
/g' -e 's/)/ ) /g' -e 's/\!/ \! /g' \
  -e 's/\?/ \? /g' -e 's/\;/ /g' -e 's/\:/ /g' -e 's/-/ - /g' -e 's/=/ /g' -e 
's/=/ /g' -e 's/*/ /g' -e 's/|/ /g' \
  -e 's/«/ /g' | tr 0-9 " "
}
wget 
http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz
gzip -d news.2013.en.shuffled.gz
normalize_text < news.2013.en.shuffled > data.txt
{code}

> parallel Latent Dirichlet Allocation (LDA) atop of spark in MLlib
> -----------------------------------------------------------------
>
>                 Key: SPARK-1405
>                 URL: https://issues.apache.org/jira/browse/SPARK-1405
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>            Reporter: Xusen Yin
>            Assignee: Guoqiang Li
>            Priority: Critical
>              Labels: features
>         Attachments: performance_comparison.png
>
>   Original Estimate: 336h
>  Remaining Estimate: 336h
>
> Latent Dirichlet Allocation (a.k.a. LDA) is a topic model which extracts 
> topics from text corpus. Different with current machine learning algorithms 
> in MLlib, instead of using optimization algorithms such as gradient desent, 
> LDA uses expectation algorithms such as Gibbs sampling. 
> In this PR, I prepare a LDA implementation based on Gibbs sampling, with a 
> wholeTextFiles API (solved yet), a word segmentation (import from Lucene), 
> and a Gibbs sampling core.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to