[
https://issues.apache.org/jira/browse/SPARK-55159?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Yicong Huang updated SPARK-55159:
---------------------------------
Issue Type: Umbrella (was: Improvement)
> Extract Arrow batch transformers from serializers for better composability
> --------------------------------------------------------------------------
>
> Key: SPARK-55159
> URL: https://issues.apache.org/jira/browse/SPARK-55159
> Project: Spark
> Issue Type: Umbrella
> Components: PySpark
> Affects Versions: 4.2.0
> Reporter: Yicong Huang
> Priority: Major
>
> Currently, PySpark's Arrow serializers (e.g., \{{ArrowStreamUDFSerializer}},
> \{{ArrowStreamPandasSerializer}}) mix two concerns:
> 1. *Serialization*: Reading/writing Arrow IPC streams
> 2. *Data transformation*: Flattening structs, wrapping columns, converting to
> pandas, etc.
> For example, \{{ArrowStreamUDFSerializer}} does both in one class:
> {code:python}
> class ArrowStreamUDFSerializer(ArrowStreamSerializer):
> def load_stream(self, stream):
> batches = super().load_stream(stream) # serialization
> for batch in batches:
> struct = batch.column(0)
> yield [pa.RecordBatch.from_arrays(struct.flatten(), ...)] #
> transformation
> def dump_stream(self, iterator, stream):
> # transformation: wrap into struct
> # serialization: write to stream
> # protocol: write START_ARROW_STREAM marker
> {code}
> This proposal introduces *Arrow batch transformers* - pure callable classes
> that transform \{{Iterator[RecordBatch] -> Iterator[RecordBatch]}} with no
> side effects:
> {code:python}
> class FlattenStructTransformer:
> """Iterator[RecordBatch] -> Iterator[RecordBatch]"""
> def __call__(self, batches):
> for batch in batches:
> struct = batch.column(0)
> yield pa.RecordBatch.from_arrays(struct.flatten(), ...)
> class WrapStructTransformer:
> """Iterator[RecordBatch] -> Iterator[RecordBatch]"""
> def __call__(self, batches):
> for batch in batches:
> struct = pa.StructArray.from_arrays(batch.columns, ...)
> yield pa.RecordBatch.from_arrays([struct], ["_0"])
> {code}
> Serializers then compose these transformers:
> {code:python}
> class ArrowStreamUDFSerializer(ArrowStreamSerializer):
> def __init__(self):
> self._flatten = FlattenStructTransformer()
> self._wrap = WrapStructTransformer()
> def load_stream(self, stream):
> batches = super().load_stream(stream)
> return self._flatten(batches)
> def dump_stream(self, iterator, stream):
> wrapped = self._wrap(iterator)
> return super().dump_stream(wrapped, stream)
> {code}
> *Benefits:*
> - Clear separation of concerns (serialization vs transformation)
> - Transformers are reusable and testable in isolation
> - Easier to understand data flow as a pipeline
> - Transformers have no side effects (I/O stays in serializers)
> *Design principles:*
> - Transformers: \{{Iterator -> Iterator}}, pure, no side effects
> - Serializers: Handle I/O, protocol details (e.g., START_ARROW_STREAM marker)
--
This message was sent by Atlassian Jira
(v8.20.10#820010)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]