[ 
https://issues.apache.org/jira/browse/SPARK-55159?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Yicong Huang updated SPARK-55159:
---------------------------------
    Description: 
Currently, PySpark's Arrow serializers (e.g., {{ArrowStreamUDFSerializer}}, 
{{ArrowStreamPandasSerializer}}) mix two concerns:

1. *Serialization*: Reading/writing Arrow IPC streams
2. *Data transformation*: Flattening structs, wrapping columns, converting to 
pandas, etc.

*Proposed approach (3 phases):*

*Phase 1: Extract transformers to conversion.py*
Extract transformation logic into {{ArrowBatchTransformer}} class with static 
methods in {{pyspark.sql.conversion}}. Serializers call these transformers 
internally.

{code:python}
class ArrowBatchTransformer:
    @staticmethod
    def flatten_struct(batch: pa.RecordBatch) -> pa.RecordBatch:
        """Flatten a single struct column into a RecordBatch."""
        struct = batch.column(0)
        return pa.RecordBatch.from_arrays(struct.flatten(), 
schema=pa.schema(struct.type))

    @staticmethod
    def wrap_struct(batch: pa.RecordBatch) -> pa.RecordBatch:
        """Wrap a RecordBatch's columns into a single struct column."""
        if batch.num_columns == 0:
            struct = pa.array([{}] * batch.num_rows)
        else:
            struct = pa.StructArray.from_arrays(batch.columns, 
fields=pa.struct(list(batch.schema)))
        return pa.RecordBatch.from_arrays([struct], ["_0"])
{code}

Serializers use these via {{map()}}:
{code:python}
class ArrowStreamUDFSerializer(ArrowStreamSerializer):
    def load_stream(self, stream):
        batches = super().load_stream(stream)
        return map(list, map(ArrowBatchTransformer.flatten_struct, batches))

    def dump_stream(self, iterator, stream):
        batches = map(lambda x: ArrowBatchTransformer.wrap_struct(x[0]), 
iterator)
        ...
{code}

*Phase 2: Reduce serializer complexity*
- Reduce inheritance depth in serializer hierarchy
- Simplify serializer implementations using extracted transformers
- Remove duplicated transformation logic across serializers

*Phase 3: Make transformers usable outside serializers*
- Enable direct use of transformers for custom Arrow processing pipelines
- Support chaining transformers for complex transformations

*Benefits:*
- Clear separation of concerns (serialization vs transformation)
- Transformers are reusable and testable in isolation
- Easier to understand data flow as a pipeline
- Transformers have no side effects (I/O stays in serializers)

*Design principles:*
- Transformers: Pure functions {{RecordBatch -> RecordBatch}}, no side effects
- Serializers: Handle I/O, protocol details (e.g., START_ARROW_STREAM marker)

  was:
Currently, PySpark's Arrow serializers (e.g., \{{ArrowStreamUDFSerializer}}, 
\{{ArrowStreamPandasSerializer}}) mix two concerns:

1. *Serialization*: Reading/writing Arrow IPC streams
2. *Data transformation*: Flattening structs, wrapping columns, converting to 
pandas, etc.

For example, \{{ArrowStreamUDFSerializer}} does both in one class:

{code:python}
class ArrowStreamUDFSerializer(ArrowStreamSerializer):
    def load_stream(self, stream):
        batches = super().load_stream(stream)  # serialization
        for batch in batches:
            struct = batch.column(0)
            yield [pa.RecordBatch.from_arrays(struct.flatten(), ...)]  # 
transformation

    def dump_stream(self, iterator, stream):
        # transformation: wrap into struct
        # serialization: write to stream
        # protocol: write START_ARROW_STREAM marker
{code}

This proposal introduces *Arrow batch transformers* - pure callable classes 
that transform \{{Iterator[RecordBatch] -> Iterator[RecordBatch]}} with no side 
effects:

{code:python}
class FlattenStructTransformer:
    """Iterator[RecordBatch] -> Iterator[RecordBatch]"""
    def __call__(self, batches):
        for batch in batches:
            struct = batch.column(0)
            yield pa.RecordBatch.from_arrays(struct.flatten(), ...)

class WrapStructTransformer:
    """Iterator[RecordBatch] -> Iterator[RecordBatch]"""
    def __call__(self, batches):
        for batch in batches:
            struct = pa.StructArray.from_arrays(batch.columns, ...)
            yield pa.RecordBatch.from_arrays([struct], ["_0"])
{code}

Serializers then compose these transformers:

{code:python}
class ArrowStreamUDFSerializer(ArrowStreamSerializer):
    def __init__(self):
        self._flatten = FlattenStructTransformer()
        self._wrap = WrapStructTransformer()

    def load_stream(self, stream):
        batches = super().load_stream(stream)
        return self._flatten(batches)

    def dump_stream(self, iterator, stream):
        wrapped = self._wrap(iterator)
        return super().dump_stream(wrapped, stream)
{code}

*Benefits:*
- Clear separation of concerns (serialization vs transformation)
- Transformers are reusable and testable in isolation
- Easier to understand data flow as a pipeline
- Transformers have no side effects (I/O stays in serializers)

*Design principles:*
- Transformers: \{{Iterator -> Iterator}}, pure, no side effects
- Serializers: Handle I/O, protocol details (e.g., START_ARROW_STREAM marker)


> Extract Arrow batch transformers from serializers for better composability
> --------------------------------------------------------------------------
>
>                 Key: SPARK-55159
>                 URL: https://issues.apache.org/jira/browse/SPARK-55159
>             Project: Spark
>          Issue Type: Umbrella
>          Components: PySpark
>    Affects Versions: 4.2.0
>            Reporter: Yicong Huang
>            Priority: Major
>
> Currently, PySpark's Arrow serializers (e.g., {{ArrowStreamUDFSerializer}}, 
> {{ArrowStreamPandasSerializer}}) mix two concerns:
> 1. *Serialization*: Reading/writing Arrow IPC streams
> 2. *Data transformation*: Flattening structs, wrapping columns, converting to 
> pandas, etc.
> *Proposed approach (3 phases):*
> *Phase 1: Extract transformers to conversion.py*
> Extract transformation logic into {{ArrowBatchTransformer}} class with static 
> methods in {{pyspark.sql.conversion}}. Serializers call these transformers 
> internally.
> {code:python}
> class ArrowBatchTransformer:
>     @staticmethod
>     def flatten_struct(batch: pa.RecordBatch) -> pa.RecordBatch:
>         """Flatten a single struct column into a RecordBatch."""
>         struct = batch.column(0)
>         return pa.RecordBatch.from_arrays(struct.flatten(), 
> schema=pa.schema(struct.type))
>     @staticmethod
>     def wrap_struct(batch: pa.RecordBatch) -> pa.RecordBatch:
>         """Wrap a RecordBatch's columns into a single struct column."""
>         if batch.num_columns == 0:
>             struct = pa.array([{}] * batch.num_rows)
>         else:
>             struct = pa.StructArray.from_arrays(batch.columns, 
> fields=pa.struct(list(batch.schema)))
>         return pa.RecordBatch.from_arrays([struct], ["_0"])
> {code}
> Serializers use these via {{map()}}:
> {code:python}
> class ArrowStreamUDFSerializer(ArrowStreamSerializer):
>     def load_stream(self, stream):
>         batches = super().load_stream(stream)
>         return map(list, map(ArrowBatchTransformer.flatten_struct, batches))
>     def dump_stream(self, iterator, stream):
>         batches = map(lambda x: ArrowBatchTransformer.wrap_struct(x[0]), 
> iterator)
>         ...
> {code}
> *Phase 2: Reduce serializer complexity*
> - Reduce inheritance depth in serializer hierarchy
> - Simplify serializer implementations using extracted transformers
> - Remove duplicated transformation logic across serializers
> *Phase 3: Make transformers usable outside serializers*
> - Enable direct use of transformers for custom Arrow processing pipelines
> - Support chaining transformers for complex transformations
> *Benefits:*
> - Clear separation of concerns (serialization vs transformation)
> - Transformers are reusable and testable in isolation
> - Easier to understand data flow as a pipeline
> - Transformers have no side effects (I/O stays in serializers)
> *Design principles:*
> - Transformers: Pure functions {{RecordBatch -> RecordBatch}}, no side effects
> - Serializers: Handle I/O, protocol details (e.g., START_ARROW_STREAM marker)



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to