[ 
https://issues.apache.org/jira/browse/SPARK-7196?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14706418#comment-14706418
 ] 

fang fang chen commented on SPARK-7196:
---------------------------------------

Post the error trace here:
java.lang.RuntimeException: Unsupported datatype DecimalType(20,2)
        at scala.sys.package$.error(package.scala:27)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:368)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:312)
        at scala.Option.getOrElse(Option.scala:120)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$.fromDataType(ParquetTypes.scala:311)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:391)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:390)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at scala.collection.immutable.List.foreach(List.scala:318)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.AbstractTraversable.map(Traversable.scala:105)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypes.scala:389)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$.writeMetaData(ParquetTypes.scala:436)
        at 
org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache.prepareMetadata(newParquet.scala:240)
        at 
org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$6.apply(newParquet.scala:256)
        at 
org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$6.apply(newParquet.scala:251)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at scala.collection.immutable.List.foreach(List.scala:318)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.AbstractTraversable.map(Traversable.scala:105)
        at 
org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache.refresh(newParquet.scala:251)
        at 
org.apache.spark.sql.parquet.ParquetRelation2.<init>(newParquet.scala:369)
        at 
org.apache.spark.sql.parquet.DefaultSource.createRelation(newParquet.scala:96)
        at 
org.apache.spark.sql.parquet.DefaultSource.createRelation(newParquet.scala:125)
        at org.apache.spark.sql.sources.ResolvedDataSource$.apply(ddl.scala:308)
        at org.apache.spark.sql.DataFrame.save(DataFrame.scala:1123)
        at org.apache.spark.sql.DataFrame.saveAsParquetFile(DataFrame.scala:922)
        at 
org.apache.spark.examples.sql.LoadFromMysql_SqlContext$.main(LoadFromMysql_SqlContext.scala:69)
        at 
org.apache.spark.examples.sql.LoadFromMysql_SqlContext.main(LoadFromMysql_SqlContext.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at 
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)

> decimal precision lost when loading DataFrame from JDBC
> -------------------------------------------------------
>
>                 Key: SPARK-7196
>                 URL: https://issues.apache.org/jira/browse/SPARK-7196
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.3.1
>            Reporter: Ken Geis
>            Assignee: Liang-Chi Hsieh
>             Fix For: 1.3.2, 1.4.0
>
>
> I have a decimal database field that is defined as 10.2 (i.e. ##########.##). 
> When I load it into Spark via sqlContext.jdbc(..), the type of the 
> corresponding field in the DataFrame is DecimalType, with precisionInfo None. 
> Because of that loss of precision information, SPARK-4176 is triggered when I 
> try to .saveAsTable(..).



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to