[
https://issues.apache.org/jira/browse/SPARK-7196?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14711174#comment-14711174
]
Jose Rivera commented on SPARK-7196:
------------------------------------
Same error as [~fang fang chen]
{code}
org.apache.spark.sql.AnalysisException: Unsupported datatype DecimalType(20,2);
at
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:372)
at
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:316)
at scala.Option.getOrElse(Option.scala:120)
at
org.apache.spark.sql.parquet.ParquetTypesConverter$.fromDataType(ParquetTypes.scala:315)
at
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:396)
at
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:395)
at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at
org.apache.spark.sql.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypes.scala:394)
at
org.apache.spark.sql.parquet.RowWriteSupport.init(ParquetTableSupport.scala:150)
at
parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:278)
at
parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:252)
at
org.apache.spark.sql.parquet.ParquetOutputWriter.<init>(newParquet.scala:83)
at
org.apache.spark.sql.parquet.ParquetRelation2$$anon$4.newInstance(newParquet.scala:229)
at
org.apache.spark.sql.sources.DefaultWriterContainer.initWriters(commands.scala:470)
at
org.apache.spark.sql.sources.BaseWriterContainer.executorSideSetup(commands.scala:360)
at
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation.org$apache$spark$sql$sources$InsertIntoHadoopFsRelation$$writeRows$1(commands.scala:172)
at
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation$$anonfun$insert$1.apply(commands.scala:160)
at
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation$$anonfun$insert$1.apply(commands.scala:160)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
{code}
> decimal precision lost when loading DataFrame from JDBC
> -------------------------------------------------------
>
> Key: SPARK-7196
> URL: https://issues.apache.org/jira/browse/SPARK-7196
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 1.3.1
> Reporter: Ken Geis
> Assignee: Liang-Chi Hsieh
> Fix For: 1.3.2, 1.4.0
>
>
> I have a decimal database field that is defined as 10.2 (i.e. ##########.##).
> When I load it into Spark via sqlContext.jdbc(..), the type of the
> corresponding field in the DataFrame is DecimalType, with precisionInfo None.
> Because of that loss of precision information, SPARK-4176 is triggered when I
> try to .saveAsTable(..).
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]