[ 
https://issues.apache.org/jira/browse/SPARK-7196?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14711174#comment-14711174
 ] 

Jose Rivera commented on SPARK-7196:
------------------------------------

Same error as [~fang fang chen] 

{code}
org.apache.spark.sql.AnalysisException: Unsupported datatype DecimalType(20,2);
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:372)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$fromDataType$2.apply(ParquetTypes.scala:316)
        at scala.Option.getOrElse(Option.scala:120)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$.fromDataType(ParquetTypes.scala:315)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:396)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$$anonfun$4.apply(ParquetTypes.scala:395)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.AbstractTraversable.map(Traversable.scala:105)
        at 
org.apache.spark.sql.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypes.scala:394)
        at 
org.apache.spark.sql.parquet.RowWriteSupport.init(ParquetTableSupport.scala:150)
        at 
parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:278)
        at 
parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:252)
        at 
org.apache.spark.sql.parquet.ParquetOutputWriter.<init>(newParquet.scala:83)
        at 
org.apache.spark.sql.parquet.ParquetRelation2$$anon$4.newInstance(newParquet.scala:229)
        at 
org.apache.spark.sql.sources.DefaultWriterContainer.initWriters(commands.scala:470)
        at 
org.apache.spark.sql.sources.BaseWriterContainer.executorSideSetup(commands.scala:360)
        at 
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation.org$apache$spark$sql$sources$InsertIntoHadoopFsRelation$$writeRows$1(commands.scala:172)
        at 
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation$$anonfun$insert$1.apply(commands.scala:160)
        at 
org.apache.spark.sql.sources.InsertIntoHadoopFsRelation$$anonfun$insert$1.apply(commands.scala:160)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
        at org.apache.spark.scheduler.Task.run(Task.scala:70)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
{code}

> decimal precision lost when loading DataFrame from JDBC
> -------------------------------------------------------
>
>                 Key: SPARK-7196
>                 URL: https://issues.apache.org/jira/browse/SPARK-7196
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 1.3.1
>            Reporter: Ken Geis
>            Assignee: Liang-Chi Hsieh
>             Fix For: 1.3.2, 1.4.0
>
>
> I have a decimal database field that is defined as 10.2 (i.e. ##########.##). 
> When I load it into Spark via sqlContext.jdbc(..), the type of the 
> corresponding field in the DataFrame is DecimalType, with precisionInfo None. 
> Because of that loss of precision information, SPARK-4176 is triggered when I 
> try to .saveAsTable(..).



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to