[ 
https://issues.apache.org/jira/browse/KAFKA-19902?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

RivenSun updated KAFKA-19902:
-----------------------------
    Summary: Consumer triggers OFFSET_OUT_OF_RANGE and resets to earliest when 
committed offset's epoch has been outdated after leader change  (was: Consumer 
triggers OFFSET_OUT_OF_RANGE and resets to earliest when committed offset's 
epoch has been deleted)

> Consumer triggers OFFSET_OUT_OF_RANGE and resets to earliest when committed 
> offset's epoch has been outdated after leader change
> --------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: KAFKA-19902
>                 URL: https://issues.apache.org/jira/browse/KAFKA-19902
>             Project: Kafka
>          Issue Type: Bug
>          Components: clients, consumer
>    Affects Versions: 3.9.0
>            Reporter: RivenSun
>            Priority: Major
>
> h2. Summary
> When a partition leader changes and the consumer commits offsets during/after 
> the change, if the committed offset's epoch is subsequently deleted due to 
> retention policy, the consumer will encounter OFFSET_OUT_OF_RANGE error and 
> reset to earliest (if auto.offset.reset=earliest), causing massive message 
> reprocessing.The root cause is that SubscriptionState.allConsumed() uses 
> position.offsetEpoch instead of position.currentLeader.epoch when 
> constructing OffsetAndMetadata for commit, which can become stale when leader 
> changes occur.
> ----
> h2. Environment
> Cluster Configuration:
>  * Kafka Server Version: 3.9.0
>  * Kafka Client Version: 3.9.0
>  * Topic: 200 partitions, 7-day retention, no tiered storage
>  * Consumer Group: 45 consumers (1 KafkaConsumer thread per machine)
>  * No broker/controller restarts occurred
>  * High throughput producer continuously writing messages
> Consumer Configuration:
> {code:java}
> auto.offset.reset=earliest
> enable.auto.commit=true {code}
>  
> Consumer Code:
>  * Registered ConsumerRebalanceListener
>  * Calls kafkaConsumer.commitSync() in onPartitionsRevoked() method
> ----
> h2. Problem Description
> In a scenario where the consumer group has no lag, consumers suddenly 
> consumed a massive amount of messages, far exceeding the recent few minutes 
> of producer writes. Investigation revealed that multiple partitions reset to 
> the earliest offset and reprocessed up to 7 days of historical data.
> ----
> h2. Observed Symptoms (Timeline)
>  # Consumer group rebalance occurred (triggered by normal consumer group 
> management)
>  # Consumer logged OFFSET_OUT_OF_RANGE errors immediately after rebalance
>  # Consumer reset to earliest offset due to auto.offset.reset=earliest 
> configuration
>  # Producer logged NotLeaderOrFollowerException around the same timeframe, 
> indicating partition leader changes
>  # Consumer did not log any NOT_LEADER_OR_FOLLOWER errors (these are DEBUG 
> level and not visible in production logs)
> ----
> h2. Root Cause Analysis
> h3. The Problem Chain
> 1. Leader change occurs (epoch changes from N to N+1)
>    ↓
> 2. Consumer continues processing old batches (epoch=N)
>    ↓
> 3. Consumer commits offset during/after rebalance
>    ├─ Committed offset: 1000
>    └─ Committed epoch: N (using position.offsetEpoch from old batch)
>    ↓
> 4. High throughput + retention policy causes old segments (epoch=N) to be 
> deleted
>    ↓
> 5. Consumer restarts/rebalances and fetches committed offset
>    ├─ Tries to validate offset 1000 with epoch=N
>    └─ Broker cannot find epoch=N (segments deleted)
>    ↓
> 6. Broker returns OFFSET_OUT_OF_RANGE
>    ↓
> 7. Consumer resets to earliest offset
> h3. Code Analysis
> The problematic code in SubscriptionState.allConsumed():
> {code:java}
> // 
> kafka/clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition())
>             allConsumed.put(topicPartition, new OffsetAndMetadata(
>                 partitionState.position.offset,
>                 partitionState.position.offsetEpoch,  // Problem: uses 
> offsetEpoch from consumed batch
>                 ""));
>     });
>     return allConsumed;
> } {code}
>  
> Why this is problematic:The FetchPosition class contains two different epoch 
> values:
>  * offsetEpoch: The epoch from the last consumed record's batch
>  * currentLeader.epoch: The current partition leader's epoch from metadata
> When committing offsets, we should use currentLeader.epoch instead of 
> offsetEpoch because:
>  # offsetEpoch represents the epoch of already consumed data (historical)
>  # currentLeader.epoch represents the current partition leader (up-to-date)
> h3. Scenarios Where These Epochs Diverge
> Scenario A: Leader changes while consumer is processing old batches
>  * T1: Consumer fetches batch with epoch=5
>  * T2: Leader changes to epoch=6
>  * T3: Metadata updates with new leader epoch=6
>  * T4: Consumer commits offset
>  * offsetEpoch = 5 (from batch being processed)
>  * currentLeader.epoch = 6 (from updated metadata)
>  * Problem: Commits epoch=5, which may soon be deleted
> Scenario B: Recovery from committed offset after leader change
>  * Consumer commits offset with old epoch=N
>  * Leader changes to epoch=N+1
>  * Old segments (epoch=N) are deleted by retention policy
>  * Consumer rebalances and tries to restore from committed offset
>  * offsetEpoch = N (from committed offset)
>  * currentLeader.epoch = N+1 (from current metadata)
>  * Problem: Validation fails because epoch=N no longer exists
> ----
> h2. Steps to Reproduce
> This is a timing-sensitive edge case. The following conditions increase the 
> likelihood:
>  # Setup:
>  * High-throughput topic (to trigger faster log rotation)
>  * Relatively short retention period (e.g., 7 days)
>  * Consumer group with rebalance listener calling commitSync()
>  * enable.auto.commit=true (or any manual commit)
>  # Trigger:
>  * Trigger a partition leader change (broker restart, controller election, 
> etc.)
>  * Simultaneously or shortly after, trigger a consumer group rebalance
>  * Wait for retention policy to delete old log segments
>  # Expected Result:
> Consumer should resume from committed offset
>  # Actual Result:
> Consumer encounters OFFSET_OUT_OF_RANGE and resets to earliest
> ----
> h2. Impact
>  * Data Reprocessing: Consumers may reprocess up to retention.ms worth of data
>  * Service Degradation: Sudden spike in consumer throughput can overwhelm 
> downstream systems
>  * Resource Waste: Unnecessary CPU, memory, and network usage
>  * Potential Duplicates: If using auto.offset.reset=earliest, duplicate 
> message processing is guaranteed
> ----
> h2. Proposed Fix
> h3. Root Cause Analysis
> The issue is more fundamental than a simple field selection problem. The core 
> issue is that both epoch values in FetchPosition can be stale at commit time:
>  # offsetEpoch: Contains the epoch from the last consumed record's batch. If 
> a leader change occurs after consumption but before commit, this epoch 
> becomes stale and may reference log segments that have been deleted.
>  # currentLeader.epoch: Inherited from the previous position during normal 
> consumption and only updated when:
>  * NOT_LEADER_OR_FOLLOWER or FENCED_LEADER_EPOCH errors are detected
>  * Position is restored from committed offsets (fetches from metadata)
>  * Explicit validation is triggered via 
> maybeValidatePositionForCurrentLeader()
> During normal, error-free consumption, currentLeader is never updated and can 
> also become stale.
> h3. Problem with Current Code
> Location: org.apache.kafka.clients.consumer.internals.FetchCollector 
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
>     SubscriptionState.FetchPosition nextPosition = new 
> SubscriptionState.FetchPosition(
>             nextInLineFetch.nextFetchOffset(),
>             nextInLineFetch.lastEpoch(),    // offsetEpoch: from consumed 
> batch
>             position.currentLeader);         // ❌ currentLeader: inherited, 
> NOT updated!
>     log.trace("Updating fetch position from {} to {} for partition {} and 
> returning {} records from `poll()`",
>             position, nextPosition, tp, partRecords.size());
>     subscriptions.position(tp, nextPosition);
>     positionAdvanced = true;
> }
> {code}
> The inherited currentLeader means it can be as stale as offsetEpoch in 
> certain scenarios.
> ----
> h3. Recommended Solution: Proactively Update currentLeader During Position 
> Updates
> Option 1: Update currentLeader when advancing position (Primary 
> Recommendation)Modify FetchCollector to fetch the latest leader information 
> from metadata every time the position is updated:
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
>     // Fetch the latest leader information from metadata
>     Metadata.LeaderAndEpoch currentLeaderAndEpoch = 
> metadata.currentLeader(tp);
>     
>     SubscriptionState.FetchPosition nextPosition = new 
> SubscriptionState.FetchPosition(
>             nextInLineFetch.nextFetchOffset(),
>             nextInLineFetch.lastEpoch(),
>             currentLeaderAndEpoch);  // ✅ Use fresh leader info from metadata
>     
>     log.trace("Updating fetch position from {} to {} for partition {} and 
> returning {} records from `poll()`",
>             position, nextPosition, tp, partRecords.size());
>     subscriptions.position(tp, nextPosition);
>     positionAdvanced = true;
> } {code}
> Advantages:
>  * Ensures currentLeader is always up-to-date
>  * Makes allConsumed() safe to use *currentLeader.epoch* for commits
> Modify SubscriptionState.allConsumed() to {color:#de350b}use 
> currentLeader.epoch instead of offsetEpoch{color}:
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition())
>             allConsumed.put(topicPartition, new OffsetAndMetadata(
>                 partitionState.position.offset,
>                 partitionState.position.currentLeader.epoch,  // ✅ Use 
> current leader epoch
>                 ""));
>     });
>     return allConsumed;
> } {code}
>  
>  * Minimal performance impact (metadata lookup is O(1) from local cache)
>  * Aligns with the existing pattern in refreshCommittedOffsets()
> Potential Concerns:
>  * Adds one metadata lookup per position update
>  * If metadata is stale, currentLeader.epoch could still lag slightly, but 
> this is the same risk as today
> ----
> h3. Alternative Solutions
> Option 2: Fetch fresh leader info during commitModify allConsumed() to fetch 
> the latest leader information at commit time:
> {code:java}
> // Note: This would require passing metadata reference to allConsumed()
> public synchronized Map<TopicPartition, OffsetAndMetadata> 
> allConsumed(ConsumerMetadata metadata) {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition()) {
>             // Fetch the latest leader epoch from metadata at commit time
>             Metadata.LeaderAndEpoch latestLeader = 
> metadata.currentLeader(topicPartition);
>             Optional<Integer> epochToCommit = latestLeader.epoch.isPresent() 
>                 ? latestLeader.epoch 
>                 : partitionState.position.offsetEpoch;  // Fallback to 
> offsetEpoch
>             
>             allConsumed.put(topicPartition, new OffsetAndMetadata(
>                 partitionState.position.offset,
>                 epochToCommit,
>                 ""));
>         }
>     });
>     return allConsumed;
> } {code}
> Advantages:
>  * Only impacts commit path, not consumption hot path
>  * Directly addresses the commit-time staleness issue
> Disadvantages:
>  * Requires changing the signature of allConsumed() (API change)
>  * May still have a race condition if leader changes between metadata fetch 
> and commit
>  * Metadata could be stale if update hasn't been processed yet
> ----
> Option 3: Use the maximum epoch valueUse the larger of the two epoch values, 
> assuming newer epochs have higher values:
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition()) {
>             Optional<Integer> epochToCommit;
>             
>             if (partitionState.position.offsetEpoch.isPresent() && 
>                 partitionState.position.currentLeader.epoch.isPresent()) {
>                 // Use the maximum of the two epochs
>                 int maxEpoch = Math.max(
>                     partitionState.position.offsetEpoch.get(),
>                     partitionState.position.currentLeader.epoch.get());
>                 epochToCommit = Optional.of(maxEpoch);
>             } else {
>                 // Fallback to whichever is present
>                 epochToCommit = 
> partitionState.position.currentLeader.epoch.isPresent()
>                     ? partitionState.position.currentLeader.epoch
>                     : partitionState.position.offsetEpoch;
>             }
>             
>             allConsumed.put(topicPartition, new OffsetAndMetadata(
>                 partitionState.position.offset,
>                 epochToCommit,
>                 ""));
>         }
>     });
>     return allConsumed;
> } {code}
> Advantages:
>  * No API changes required
>  * Simple to implement
>  * Provides better protection than using only one epoch
> Disadvantages:
>  * Heuristic-based; assumes epochs are monotonically increasing
>  * Could still use a stale epoch if both values are old
>  * Doesn't solve the root cause of stale currentLeader
> ----
> h3. Recommendation
> Primary recommendation: Implement Option 1 (Update currentLeader during 
> position updates)This is the most robust solution because:
>  # It ensures currentLeader is always fresh
>  # It fixes the root cause rather than working around symptoms
>  # It has minimal performance impact
>  # It makes the codebase more consistent and maintainable
> Secondary recommendation: Implement Option 3 as a defense-in-depth 
> measureEven with Option 1, using max(offsetEpoch, currentLeader.epoch) in 
> allConsumed() provides additional safety against any edge cases where one 
> epoch might be more up-to-date than the other.Combined approach (strongest 
> protection):
> {code:java}
> // In FetchCollector.java
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
>     Metadata.LeaderAndEpoch currentLeaderAndEpoch = 
> metadata.currentLeader(tp);
>     SubscriptionState.FetchPosition nextPosition = new 
> SubscriptionState.FetchPosition(
>             nextInLineFetch.nextFetchOffset(),
>             nextInLineFetch.lastEpoch(),
>             currentLeaderAndEpoch);  // ✅ Keep currentLeader fresh
>     subscriptions.position(tp, nextPosition);
>     positionAdvanced = true;
> }
>  
> // In SubscriptionState.java
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition()) {
>             // Use the maximum epoch as defense-in-depth
>             Optional<Integer> epochToCommit;
>             if (partitionState.position.offsetEpoch.isPresent() && 
>                 partitionState.position.currentLeader.epoch.isPresent()) {
>                 epochToCommit = Optional.of(Math.max(
>                     partitionState.position.offsetEpoch.get(),
>                     partitionState.position.currentLeader.epoch.get()));
>             } else {
>                 epochToCommit = 
> partitionState.position.currentLeader.epoch.isPresent()
>                     ? partitionState.position.currentLeader.epoch
>                     : partitionState.position.offsetEpoch;
>             }
>             
>             allConsumed.put(topicPartition, new OffsetAndMetadata(
>                 partitionState.position.offset,
>                 epochToCommit,
>                 ""));
>         }
>     });
>     return allConsumed;
> } {code}
> This combined approach provides:
>  * Prevention: Keep currentLeader fresh during normal operation
>  * Defense: Use the best available epoch value at commit time
>  * Resilience: Minimize the window where a stale epoch can cause issues
> ----
> h2. Additional Notes
> Why consumers don't log NOT_LEADER_OR_FOLLOWER errors:All consumer-side 
> handling of NOT_LEADER_OR_FOLLOWER errors uses DEBUG level logging:
> {code:java}
> // FetchCollector.java line 325
> log.debug("Error in fetch for partition {}: {}", tp, error.exceptionName());
>  
> // AbstractFetch.java line 207
> log.debug("For {}, received error {}, with leaderIdAndEpoch {}", partition, 
> partitionError, ...);
>  
> // OffsetsForLeaderEpochUtils.java line 102
> LOG.debug("Attempt to fetch offsets for partition {} failed due to {}, 
> retrying.", ...); {code}
>  
> This makes the issue difficult to diagnose in production environments.
> ----
> h2. Workarounds (Until Fixed)
>  # Increase retention period to reduce likelihood of epoch deletion
>  # Monitor consumer lag to ensure it stays low
>  # Reduce rebalance frequency (increase max.poll.interval.ms, 
> session.timeout.ms)
>  # Use cooperative rebalance strategy to minimize rebalance impact
>  # Consider using auto.offset.reset=latest if reprocessing is more costly 
> than data loss (application-dependent)
> ----
> h2. Related Code References
> h3. 1. The problematic method: SubscriptionState.allConsumed()
> Location: org.apache.kafka.clients.consumer.internals.SubscriptionState 
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
>     Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
>     assignment.forEach((topicPartition, partitionState) -> {
>         if (partitionState.hasValidPosition())
>             allConsumed.put(topicPartition, new 
> OffsetAndMetadata(partitionState.position.offset,
>                     partitionState.position.offsetEpoch, ""));  // Uses 
> offsetEpoch instead of currentLeader.epoch
>     });
>     return allConsumed;
> } {code}
> h3. 2. How FetchPosition is updated during normal consumption
> Location: org.apache.kafka.clients.consumer.internals.FetchCollector 
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
>     SubscriptionState.FetchPosition nextPosition = new 
> SubscriptionState.FetchPosition(
>             nextInLineFetch.nextFetchOffset(),
>             nextInLineFetch.lastEpoch(),    // offsetEpoch: from consumed 
> batch
>             position.currentLeader);         // currentLeader: inherited from 
> old position, NOT updated!
>     log.trace("Updating fetch position from {} to {} for partition {} and 
> returning {} records from `poll()`",
>             position, nextPosition, tp, partRecords.size());
>     subscriptions.position(tp, nextPosition);
>     positionAdvanced = true;
> } {code}
> Key Issue: The currentLeader field is inherited from the previous position 
> and not automatically updated during normal consumption. It only gets updated 
> when leader change errors are detected.
> h3. 3. How committed offsets are restored after rebalance
> Location: 
> org.apache.kafka.clients.consumer.internals.ConsumerUtils.refreshCommittedOffsets()
> {code:java}
> public static void refreshCommittedOffsets(final Map<TopicPartition, 
> OffsetAndMetadata> offsetsAndMetadata,
>                                            final ConsumerMetadata metadata,
>                                            final SubscriptionState 
> subscriptions) {
>     for (final Map.Entry<TopicPartition, OffsetAndMetadata> entry : 
> offsetsAndMetadata.entrySet()) {
>         final TopicPartition tp = entry.getKey();
>         final OffsetAndMetadata offsetAndMetadata = entry.getValue();
>         if (offsetAndMetadata != null) {
>             // first update the epoch if necessary
>             entry.getValue().leaderEpoch().ifPresent(epoch -> 
> metadata.updateLastSeenEpochIfNewer(entry.getKey(), epoch));
>  
>             // it's possible that the partition is no longer assigned when 
> the response is received,
>             // so we need to ignore seeking if that's the case
>             if (subscriptions.isAssigned(tp)) {
>                 final ConsumerMetadata.LeaderAndEpoch leaderAndEpoch = 
> metadata.currentLeader(tp);
>                 final SubscriptionState.FetchPosition position = new 
> SubscriptionState.FetchPosition(
>                         offsetAndMetadata.offset(), 
>                         offsetAndMetadata.leaderEpoch(),  // offsetEpoch from 
> committed offset (may be old)
>                         leaderAndEpoch);                   // currentLeader 
> from current metadata (may be new)
>  
>                 subscriptions.seekUnvalidated(tp, position);
>  
>                 log.info("Setting offset for partition {} to the committed 
> offset {}", tp, position);
>             }
>         }
>     }
> } {code}
> The Divergence Point: When restoring from committed offsets, offsetEpoch 
> comes from the stored offset (potentially old), while currentLeader comes 
> from fresh metadata (potentially new after leader change).
> h3. 4. How OffsetsForLeaderEpoch validation request is constructed
> Location: 
> org.apache.kafka.clients.consumer.internals.OffsetsForLeaderEpochUtils.prepareRequest()
> {code:java}
> static AbstractRequest.Builder<OffsetsForLeaderEpochRequest> prepareRequest(
>         Map<TopicPartition, SubscriptionState.FetchPosition> requestData) {
>     OffsetForLeaderTopicCollection topics = new 
> OffsetForLeaderTopicCollection(requestData.size());
>     requestData.forEach((topicPartition, fetchPosition) ->
>             fetchPosition.offsetEpoch.ifPresent(fetchEpoch -> {
>                 OffsetForLeaderTopic topic = 
> topics.find(topicPartition.topic());
>                 if (topic == null) {
>                     topic = new 
> OffsetForLeaderTopic().setTopic(topicPartition.topic());
>                     topics.add(topic);
>                 }
>                 topic.partitions().add(new OffsetForLeaderPartition()
>                         .setPartition(topicPartition.partition())
>                         .setLeaderEpoch(fetchEpoch)              // Uses 
> offsetEpoch for validation
>                         
> .setCurrentLeaderEpoch(fetchPosition.currentLeader.epoch
>                                 
> .orElse(RecordBatch.NO_PARTITION_LEADER_EPOCH))
>                 );
>             })
>     );
>     return OffsetsForLeaderEpochRequest.Builder.forConsumer(topics);
> } {code}
> The Validation Problem: The validation request uses fetchEpoch (which is 
> offsetEpoch) to validate against the broker. If this epoch no longer exists 
> in the broker's log, validation fails and triggers OFFSET_OUT_OF_RANGE.
> h3. 5. FetchPosition class definition
> Location: 
> org.apache.kafka.clients.consumer.internals.SubscriptionState.FetchPosition 
>  
> {code:java}
> /**
>  * Represents the position of a partition subscription.
>  *
>  * This includes the offset and epoch from the last record in
>  * the batch from a FetchResponse. It also includes the leader epoch at the 
> time the batch was consumed.
>  */
> public static class FetchPosition {
>     public final long offset;
>     final Optional<Integer> offsetEpoch;        // Epoch from last consumed 
> record's batch
>     final Metadata.LeaderAndEpoch currentLeader; // Current partition leader 
> info from metadata
>  
>     FetchPosition(long offset) {
>         this(offset, Optional.empty(), 
> Metadata.LeaderAndEpoch.noLeaderOrEpoch());
>     }
>  
>     public FetchPosition(long offset, Optional<Integer> offsetEpoch, 
> Metadata.LeaderAndEpoch currentLeader) {
>         this.offset = offset;
>         this.offsetEpoch = Objects.requireNonNull(offsetEpoch);
>         this.currentLeader = Objects.requireNonNull(currentLeader);
>     }
>  
>     @Override
>     public String toString() {
>         return "FetchPosition{" +
>                 "offset=" + offset +
>                 ", offsetEpoch=" + offsetEpoch +
>                 ", currentLeader=" + currentLeader +
>                 '}';
>     }
> }{code}
> Class Design: The class contains both offsetEpoch (historical data epoch) and 
> currentLeader.epoch (current metadata epoch), but allConsumed() only uses the 
> former when committing.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to