[
https://issues.apache.org/jira/browse/KAFKA-19902?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
RivenSun updated KAFKA-19902:
-----------------------------
Attachment: image-2025-11-21-18-04-35-845.png
> Consumer triggers OFFSET_OUT_OF_RANGE and resets to earliest when committed
> offset's epoch has been outdated after leader change
> --------------------------------------------------------------------------------------------------------------------------------
>
> Key: KAFKA-19902
> URL: https://issues.apache.org/jira/browse/KAFKA-19902
> Project: Kafka
> Issue Type: Bug
> Components: clients, consumer
> Affects Versions: 3.9.0
> Reporter: RivenSun
> Priority: Major
> Attachments: image-2025-11-21-18-03-24-592.png,
> image-2025-11-21-18-04-35-845.png
>
>
> h2. Summary
> When a partition leader changes and the consumer commits offsets with a stale
> epoch, if the log segments containing that epoch are subsequently deleted due
> to retention policy, the consumer will encounter OFFSET_OUT_OF_RANGE error
> and reset to earliest (if auto.offset.reset=earliest), causing massive
> message reprocessing.The root cause is that SubscriptionState.allConsumed()
> uses position.offsetEpoch instead of position.currentLeader.epoch when
> constructing OffsetAndMetadata for commit, which can become stale when leader
> changes occur.
> ----
> h2. Environment
> Cluster Configuration:
> * Kafka Server Version: 3.9.0
> * Kafka Client Version: 3.9.0
> * Topic: 200 partitions, 7-day retention, no tiered storage
> * Consumer Group: 45 consumers (1 KafkaConsumer thread per machine)
> * No broker/controller restarts occurred
> * High throughput producer continuously writing messages
> Consumer Configuration:
> {code:java}
> auto.offset.reset=earliest
> enable.auto.commit=true {code}
>
> Consumer Code:
> * Registered ConsumerRebalanceListener
> * Calls kafkaConsumer.commitSync() in onPartitionsRevoked() method
> ----
> h2. Problem Description
> In a scenario where the consumer group has no lag, consumers suddenly
> consumed a massive amount of messages, far exceeding the recent few minutes
> of producer writes. Investigation revealed that multiple partitions reset to
> the earliest offset and reprocessed up to 7 days of historical data.
> ----
> h2. Observed Symptoms (Timeline)
> # Consumer group rebalance occurred (triggered by normal consumer group
> management)
> # Consumer logged OFFSET_OUT_OF_RANGE errors immediately after rebalance
> # Consumer reset to earliest offset due to auto.offset.reset=earliest
> configuration
> # Producer logged NotLeaderOrFollowerException around the same timeframe,
> indicating partition leader changes
> # Consumer did not log any NOT_LEADER_OR_FOLLOWER errors (these are DEBUG
> level and not visible in production logs)
> ----
> h2. Root Cause Analysis
> h3. The Problem Chain
> 1. Leader change occurs (epoch changes from N to N+1)
> ↓
> 2. Consumer continues processing old batches (epoch=N)
> ↓
> 3. Consumer commits offset during/after rebalance
> ├─ Committed offset: 1000
> └─ Committed epoch: N (using position.offsetEpoch from old batch)
> ↓
> 4. High throughput + retention policy causes old segments (epoch=N) to be
> deleted
> ↓
> 5. Consumer restarts/rebalances and fetches committed offset
> ├─ Tries to validate offset 1000 with epoch=N
> └─ Broker cannot find epoch=N (segments deleted)
> ↓
> 6. Broker returns OFFSET_OUT_OF_RANGE
> ↓
> 7. Consumer resets to earliest offset
> h3. Code Analysis
> The problematic code in SubscriptionState.allConsumed():
> {code:java}
> //
> kafka/clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition())
> allConsumed.put(topicPartition, new OffsetAndMetadata(
> partitionState.position.offset,
> partitionState.position.offsetEpoch, // Problem: uses
> offsetEpoch from consumed batch
> ""));
> });
> return allConsumed;
> } {code}
>
> Why this is problematic:The FetchPosition class contains two different epoch
> values:
> * offsetEpoch: The epoch from the last consumed record's batch
> * currentLeader.epoch: The current partition leader's epoch from metadata
> When committing offsets, we should use currentLeader.epoch instead of
> offsetEpoch because:
> # offsetEpoch represents the epoch of already consumed data (historical)
> # currentLeader.epoch represents the current partition leader (up-to-date)
> h3. Scenarios Where These Epochs Diverge
> Scenario A: Leader changes while consumer is processing old batches
> * T1: Consumer fetches batch with epoch=5
> * T2: Leader changes to epoch=6
> * T3: Metadata updates with new leader epoch=6
> * T4: Consumer commits offset
> * offsetEpoch = 5 (from batch being processed)
> * currentLeader.epoch = 6 (from updated metadata)
> * Problem: Commits epoch=5, which may soon be deleted
> Scenario B: Recovery from committed offset after leader change
> * Consumer commits offset with old epoch=N
> * Leader changes to epoch=N+1
> * Old segments (epoch=N) are deleted by retention policy
> * Consumer rebalances and tries to restore from committed offset
> * offsetEpoch = N (from committed offset)
> * currentLeader.epoch = N+1 (from current metadata)
> * Problem: Validation fails because epoch=N no longer exists
> ----
> h2. Steps to Reproduce
> This is a timing-sensitive edge case. The following conditions increase the
> likelihood:
> # Setup:
> * High-throughput topic (to trigger faster log rotation)
> * Relatively short retention period (e.g., 7 days)
> * Consumer group with rebalance listener calling commitSync()
> * enable.auto.commit=true (or any manual commit)
> # Trigger:
> * Trigger a partition leader change (broker restart, controller election,
> etc.)
> * Simultaneously or shortly after, trigger a consumer group rebalance
> * Wait for retention policy to delete old log segments
> # Expected Result:
> Consumer should resume from committed offset
> # Actual Result:
> Consumer encounters OFFSET_OUT_OF_RANGE and resets to earliest
> ----
> h2. Impact
> * Data Reprocessing: Consumers may reprocess up to retention.ms worth of data
> * Service Degradation: Sudden spike in consumer throughput can overwhelm
> downstream systems
> * Resource Waste: Unnecessary CPU, memory, and network usage
> * Potential Duplicates: If using auto.offset.reset=earliest, duplicate
> message processing is guaranteed
> ----
> h2. Proposed Fix
> h3. Root Cause Analysis
> The issue is more fundamental than a simple field selection problem. The core
> issue is that both epoch values in FetchPosition can be stale at commit time:
> # offsetEpoch: Contains the epoch from the last consumed record's batch. If
> a leader change occurs after consumption but before commit, this epoch
> becomes stale and may reference log segments that have been deleted.
> # currentLeader.epoch: Inherited from the previous position during normal
> consumption and only updated when:
> * NOT_LEADER_OR_FOLLOWER or FENCED_LEADER_EPOCH errors are detected
> * Position is restored from committed offsets (fetches from metadata)
> * Explicit validation is triggered via
> maybeValidatePositionForCurrentLeader()
> During normal, error-free consumption, currentLeader is never updated and can
> also become stale.
> h3. Problem with Current Code
> Location: org.apache.kafka.clients.consumer.internals.FetchCollector
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
> SubscriptionState.FetchPosition nextPosition = new
> SubscriptionState.FetchPosition(
> nextInLineFetch.nextFetchOffset(),
> nextInLineFetch.lastEpoch(), // offsetEpoch: from consumed
> batch
> position.currentLeader); // ❌ currentLeader: inherited,
> NOT updated!
> log.trace("Updating fetch position from {} to {} for partition {} and
> returning {} records from `poll()`",
> position, nextPosition, tp, partRecords.size());
> subscriptions.position(tp, nextPosition);
> positionAdvanced = true;
> }
> {code}
> The inherited currentLeader means it can be as stale as offsetEpoch in
> certain scenarios.
> ----
> h3. Recommended Solution: Proactively Update currentLeader During Position
> Updates
> Option 1: Update currentLeader when advancing position (Primary
> Recommendation)Modify FetchCollector to fetch the latest leader information
> from metadata every time the position is updated:
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
> // Fetch the latest leader information from metadata
> Metadata.LeaderAndEpoch currentLeaderAndEpoch =
> metadata.currentLeader(tp);
>
> SubscriptionState.FetchPosition nextPosition = new
> SubscriptionState.FetchPosition(
> nextInLineFetch.nextFetchOffset(),
> nextInLineFetch.lastEpoch(),
> currentLeaderAndEpoch); // ✅ Use fresh leader info from metadata
>
> log.trace("Updating fetch position from {} to {} for partition {} and
> returning {} records from `poll()`",
> position, nextPosition, tp, partRecords.size());
> subscriptions.position(tp, nextPosition);
> positionAdvanced = true;
> } {code}
> Advantages:
> * Ensures currentLeader is always up-to-date
> * Makes allConsumed() safe to use *currentLeader.epoch* for commits
> Modify SubscriptionState.allConsumed() to {color:#de350b}use
> currentLeader.epoch instead of offsetEpoch{color}:
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition())
> allConsumed.put(topicPartition, new OffsetAndMetadata(
> partitionState.position.offset,
> partitionState.position.currentLeader.epoch, // ✅ Use
> current leader epoch
> ""));
> });
> return allConsumed;
> } {code}
>
> * Minimal performance impact (metadata lookup is O(1) from local cache)
> * Aligns with the existing pattern in refreshCommittedOffsets()
> Potential Concerns:
> * Adds one metadata lookup per position update
> * If metadata is stale, currentLeader.epoch could still lag slightly, but
> this is the same risk as today
> ----
> h3. Alternative Solutions
> Option 2: Fetch fresh leader info during commitModify allConsumed() to fetch
> the latest leader information at commit time:
> {code:java}
> // Note: This would require passing metadata reference to allConsumed()
> public synchronized Map<TopicPartition, OffsetAndMetadata>
> allConsumed(ConsumerMetadata metadata) {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition()) {
> // Fetch the latest leader epoch from metadata at commit time
> Metadata.LeaderAndEpoch latestLeader =
> metadata.currentLeader(topicPartition);
> Optional<Integer> epochToCommit = latestLeader.epoch.isPresent()
> ? latestLeader.epoch
> : partitionState.position.offsetEpoch; // Fallback to
> offsetEpoch
>
> allConsumed.put(topicPartition, new OffsetAndMetadata(
> partitionState.position.offset,
> epochToCommit,
> ""));
> }
> });
> return allConsumed;
> } {code}
> Advantages:
> * Only impacts commit path, not consumption hot path
> * Directly addresses the commit-time staleness issue
> Disadvantages:
> * Requires changing the signature of allConsumed() (API change)
> * May still have a race condition if leader changes between metadata fetch
> and commit
> * Metadata could be stale if update hasn't been processed yet
> ----
> Option 3: Use the maximum epoch valueUse the larger of the two epoch values,
> assuming newer epochs have higher values:
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition()) {
> Optional<Integer> epochToCommit;
>
> if (partitionState.position.offsetEpoch.isPresent() &&
> partitionState.position.currentLeader.epoch.isPresent()) {
> // Use the maximum of the two epochs
> int maxEpoch = Math.max(
> partitionState.position.offsetEpoch.get(),
> partitionState.position.currentLeader.epoch.get());
> epochToCommit = Optional.of(maxEpoch);
> } else {
> // Fallback to whichever is present
> epochToCommit =
> partitionState.position.currentLeader.epoch.isPresent()
> ? partitionState.position.currentLeader.epoch
> : partitionState.position.offsetEpoch;
> }
>
> allConsumed.put(topicPartition, new OffsetAndMetadata(
> partitionState.position.offset,
> epochToCommit,
> ""));
> }
> });
> return allConsumed;
> } {code}
> Advantages:
> * No API changes required
> * Simple to implement
> * Provides better protection than using only one epoch
> Disadvantages:
> * Heuristic-based; assumes epochs are monotonically increasing
> * Could still use a stale epoch if both values are old
> * Doesn't solve the root cause of stale currentLeader
> ----
> h3. Recommendation
> Primary recommendation: Implement Option 1 (Update currentLeader during
> position updates)This is the most robust solution because:
> # It ensures currentLeader is always fresh
> # It fixes the root cause rather than working around symptoms
> # It has minimal performance impact
> # It makes the codebase more consistent and maintainable
> Secondary recommendation: Implement Option 3 as a defense-in-depth
> measureEven with Option 1, using max(offsetEpoch, currentLeader.epoch) in
> allConsumed() provides additional safety against any edge cases where one
> epoch might be more up-to-date than the other.Combined approach (strongest
> protection):
> {code:java}
> // In FetchCollector.java
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
> Metadata.LeaderAndEpoch currentLeaderAndEpoch =
> metadata.currentLeader(tp);
> SubscriptionState.FetchPosition nextPosition = new
> SubscriptionState.FetchPosition(
> nextInLineFetch.nextFetchOffset(),
> nextInLineFetch.lastEpoch(),
> currentLeaderAndEpoch); // ✅ Keep currentLeader fresh
> subscriptions.position(tp, nextPosition);
> positionAdvanced = true;
> }
>
> // In SubscriptionState.java
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition()) {
> // Use the maximum epoch as defense-in-depth
> Optional<Integer> epochToCommit;
> if (partitionState.position.offsetEpoch.isPresent() &&
> partitionState.position.currentLeader.epoch.isPresent()) {
> epochToCommit = Optional.of(Math.max(
> partitionState.position.offsetEpoch.get(),
> partitionState.position.currentLeader.epoch.get()));
> } else {
> epochToCommit =
> partitionState.position.currentLeader.epoch.isPresent()
> ? partitionState.position.currentLeader.epoch
> : partitionState.position.offsetEpoch;
> }
>
> allConsumed.put(topicPartition, new OffsetAndMetadata(
> partitionState.position.offset,
> epochToCommit,
> ""));
> }
> });
> return allConsumed;
> } {code}
> This combined approach provides:
> * Prevention: Keep currentLeader fresh during normal operation
> * Defense: Use the best available epoch value at commit time
> * Resilience: Minimize the window where a stale epoch can cause issues
> ----
> h2. Additional Notes
> Why consumers don't log NOT_LEADER_OR_FOLLOWER errors:All consumer-side
> handling of NOT_LEADER_OR_FOLLOWER errors uses DEBUG level logging:
> {code:java}
> // FetchCollector.java line 325
> log.debug("Error in fetch for partition {}: {}", tp, error.exceptionName());
>
> // AbstractFetch.java line 207
> log.debug("For {}, received error {}, with leaderIdAndEpoch {}", partition,
> partitionError, ...);
>
> // OffsetsForLeaderEpochUtils.java line 102
> LOG.debug("Attempt to fetch offsets for partition {} failed due to {},
> retrying.", ...); {code}
>
> This makes the issue difficult to diagnose in production environments.
> ----
> h2. Workarounds (Until Fixed)
> # Increase retention period to reduce likelihood of epoch deletion
> # Monitor consumer lag to ensure it stays low
> # Reduce rebalance frequency (increase max.poll.interval.ms,
> session.timeout.ms)
> # Use cooperative rebalance strategy to minimize rebalance impact
> # Consider using auto.offset.reset=latest if reprocessing is more costly
> than data loss (application-dependent)
> ----
> h2. Related Code References
> h3. 1. The problematic method: SubscriptionState.allConsumed()
> Location: org.apache.kafka.clients.consumer.internals.SubscriptionState
> {code:java}
> public synchronized Map<TopicPartition, OffsetAndMetadata> allConsumed() {
> Map<TopicPartition, OffsetAndMetadata> allConsumed = new HashMap<>();
> assignment.forEach((topicPartition, partitionState) -> {
> if (partitionState.hasValidPosition())
> allConsumed.put(topicPartition, new
> OffsetAndMetadata(partitionState.position.offset,
> partitionState.position.offsetEpoch, "")); // Uses
> offsetEpoch instead of currentLeader.epoch
> });
> return allConsumed;
> } {code}
> h3. 2. How FetchPosition is updated during normal consumption
> Location: org.apache.kafka.clients.consumer.internals.FetchCollector
> {code:java}
> if (nextInLineFetch.nextFetchOffset() > position.offset) {
> SubscriptionState.FetchPosition nextPosition = new
> SubscriptionState.FetchPosition(
> nextInLineFetch.nextFetchOffset(),
> nextInLineFetch.lastEpoch(), // offsetEpoch: from consumed
> batch
> position.currentLeader); // currentLeader: inherited from
> old position, NOT updated!
> log.trace("Updating fetch position from {} to {} for partition {} and
> returning {} records from `poll()`",
> position, nextPosition, tp, partRecords.size());
> subscriptions.position(tp, nextPosition);
> positionAdvanced = true;
> } {code}
> Key Issue: The currentLeader field is inherited from the previous position
> and not automatically updated during normal consumption. It only gets updated
> when leader change errors are detected.
> h3. 3. How committed offsets are restored after rebalance
> Location:
> org.apache.kafka.clients.consumer.internals.ConsumerUtils.refreshCommittedOffsets()
> {code:java}
> public static void refreshCommittedOffsets(final Map<TopicPartition,
> OffsetAndMetadata> offsetsAndMetadata,
> final ConsumerMetadata metadata,
> final SubscriptionState
> subscriptions) {
> for (final Map.Entry<TopicPartition, OffsetAndMetadata> entry :
> offsetsAndMetadata.entrySet()) {
> final TopicPartition tp = entry.getKey();
> final OffsetAndMetadata offsetAndMetadata = entry.getValue();
> if (offsetAndMetadata != null) {
> // first update the epoch if necessary
> entry.getValue().leaderEpoch().ifPresent(epoch ->
> metadata.updateLastSeenEpochIfNewer(entry.getKey(), epoch));
>
> // it's possible that the partition is no longer assigned when
> the response is received,
> // so we need to ignore seeking if that's the case
> if (subscriptions.isAssigned(tp)) {
> final ConsumerMetadata.LeaderAndEpoch leaderAndEpoch =
> metadata.currentLeader(tp);
> final SubscriptionState.FetchPosition position = new
> SubscriptionState.FetchPosition(
> offsetAndMetadata.offset(),
> offsetAndMetadata.leaderEpoch(), // offsetEpoch from
> committed offset (may be old)
> leaderAndEpoch); // currentLeader
> from current metadata (may be new)
>
> subscriptions.seekUnvalidated(tp, position);
>
> log.info("Setting offset for partition {} to the committed
> offset {}", tp, position);
> }
> }
> }
> } {code}
> The Divergence Point: When restoring from committed offsets, offsetEpoch
> comes from the stored offset (potentially old), while currentLeader comes
> from fresh metadata (potentially new after leader change).
> h3. 4. How OffsetsForLeaderEpoch validation request is constructed
> Location:
> org.apache.kafka.clients.consumer.internals.OffsetsForLeaderEpochUtils.prepareRequest()
> {code:java}
> static AbstractRequest.Builder<OffsetsForLeaderEpochRequest> prepareRequest(
> Map<TopicPartition, SubscriptionState.FetchPosition> requestData) {
> OffsetForLeaderTopicCollection topics = new
> OffsetForLeaderTopicCollection(requestData.size());
> requestData.forEach((topicPartition, fetchPosition) ->
> fetchPosition.offsetEpoch.ifPresent(fetchEpoch -> {
> OffsetForLeaderTopic topic =
> topics.find(topicPartition.topic());
> if (topic == null) {
> topic = new
> OffsetForLeaderTopic().setTopic(topicPartition.topic());
> topics.add(topic);
> }
> topic.partitions().add(new OffsetForLeaderPartition()
> .setPartition(topicPartition.partition())
> .setLeaderEpoch(fetchEpoch) // Uses
> offsetEpoch for validation
>
> .setCurrentLeaderEpoch(fetchPosition.currentLeader.epoch
>
> .orElse(RecordBatch.NO_PARTITION_LEADER_EPOCH))
> );
> })
> );
> return OffsetsForLeaderEpochRequest.Builder.forConsumer(topics);
> } {code}
> The Validation Problem: The validation request uses fetchEpoch (which is
> offsetEpoch) to validate against the broker. If this epoch no longer exists
> in the broker's log, validation fails and triggers OFFSET_OUT_OF_RANGE.
> h3. 5. FetchPosition class definition
> Location:
> org.apache.kafka.clients.consumer.internals.SubscriptionState.FetchPosition
>
> {code:java}
> /**
> * Represents the position of a partition subscription.
> *
> * This includes the offset and epoch from the last record in
> * the batch from a FetchResponse. It also includes the leader epoch at the
> time the batch was consumed.
> */
> public static class FetchPosition {
> public final long offset;
> final Optional<Integer> offsetEpoch; // Epoch from last consumed
> record's batch
> final Metadata.LeaderAndEpoch currentLeader; // Current partition leader
> info from metadata
>
> FetchPosition(long offset) {
> this(offset, Optional.empty(),
> Metadata.LeaderAndEpoch.noLeaderOrEpoch());
> }
>
> public FetchPosition(long offset, Optional<Integer> offsetEpoch,
> Metadata.LeaderAndEpoch currentLeader) {
> this.offset = offset;
> this.offsetEpoch = Objects.requireNonNull(offsetEpoch);
> this.currentLeader = Objects.requireNonNull(currentLeader);
> }
>
> @Override
> public String toString() {
> return "FetchPosition{" +
> "offset=" + offset +
> ", offsetEpoch=" + offsetEpoch +
> ", currentLeader=" + currentLeader +
> '}';
> }
> }{code}
> Class Design: The class contains both offsetEpoch (historical data epoch) and
> currentLeader.epoch (current metadata epoch), but allConsumed() only uses the
> former when committing.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)