Have you tried:

(a) calling @code_typewarn on your function
(b) using the built-in profiler?


On Tue, Mar 29, 2016 at 9:23 AM, 博陈 <[email protected]> wrote:

> First of all, have a look at the result.
>
>
> <https://lh3.googleusercontent.com/-anNt-E4P1vM/Vvp-TybegZI/AAAAAAAAABE/ZvDO2xarndMSgKVOXy_hcPd5NTh-7QcEA/s1600/QQ%25E5%259B%25BE%25E7%2589%258720160329210732.png>
>
>
>
>
>
>
>
>
> My code calculates the evolution of 1-d 2-electron system in the electric
> field, some variables are calculated during the evolution.
> According to the result of @time evolution, my code must have a
> pre-allocation problem. Before you see the long code, i suggest that the
> hotspot might be around the Arrays prop_e, \phio, pp. I have learnt that I
> can use m = Array(Float64, 1) outside a "for" loop and empty!(m) and
> push!(m, new_m) inside the loop to pre-allocate the variable m, but in my
> situations, I don't know how to pre-allocate these arrays.
>
> Below is the script (precisely, the main function) itself.
>
> function evolution(ϕ::Array{Complex{Float64}, 2},
>                    ele::Array{Float64, 1}, dx::Float64, dt::Float64,
>                    flags::Tuple{Int64, Int64, Int64, Int64})
>     ϕg = copy(ϕ)
>     FFTW.set_num_threads(8)
>     ns = length( ϕ[:, 1] )
>     x = get_x(ns, dx)
>     p = get_p(ns, dx)
>     if flags[4] == 1
>         pp = similar(p)
>         A = -cumsum(ele) * dt
>         A² = A.*A
>         ##### splitting
>         r_sp = 150.0
>         δ_sp = 5.0
>         splitter = Array(Float64, ns, ns)
>     end
>     nt = length( ele )
>
>     # ##### Pre-allocate result and temporary arrays
>     #if flags[1] == 1
>     σ = zeros(Complex128, nt)
>     #end
>     #if flags[2] == 1
>     a = zeros(Float64, nt)
>     #end
>     #if flags[3] == 1
>     r_ionization = 20.0
>     n1 = round(Int, ns/2 - r_ionization/dx)
>     n2 = round(Int, ns/2 + r_ionization/dx)
>     ip = zeros(Float64, nt)
>     #end
>
>     ##### FFT plan
>     p_fft! = plan_fft!( similar(ϕ), flags=FFTW.MEASURE )
>
>     prop_x = similar( ϕ )
>     prop_p = similar( prop_x )
>     prop_e = similar( prop_x )
>     # this two versions just cost the same time
>     xplusy = Array(Float64, ns, ns)
>     #xplusy = Array( Float64, ns^2)
>
>     ##### absorb boundary
>     r_a = ns * dx /2 - 50.0
>     δ = 10.0
>     absorb = Array(Float64, ns, ns)
>
>     k0 = 2π / (ns * dx)
>
>     @inbounds for j in 1:ns
>         @inbounds for i in 1:ns
>             prop_x[i, j] = exp( -im * get_potential(x[i], x[j]) * dt / 2 )
>             prop_p[i, j] = exp( -im * (p[i]^2 + p[j]^2)/2 * dt )
>
>             xplusy[i, j] = x[i] + x[j]
>
>             absorb[i, j] = (1.0 - get_out(x[i], r_a, δ ))* (1.0 -
> get_out(x[j],
>              r_a, δ))
>         end
>     end
>
>     if flags[2] == 1
>         pvpx = Array(Float64, ns, ns)
>         @inbounds for j in 1:ns
>             @inbounds for i in 1:ns
>                 pvpx[i, j] = get_pvpx(x[i], x[j])
>             end
>         end
>     end
>
>     if flags[4] == 1
>         ϕo = zeros(Complex128, ns, ns)
>         ϕp = zeros(Complex128, ns, ns)
>         @inbounds for  j in 1:ns
>             @inbounds for  i in 1:ns
>                 splitter[i, j] = get_out(x[i], r_sp, δ_sp) * get_out(x[j],
> r_sp, δ_sp)
>             end
>         end
>     end
>
>     for i in 1:nt
>         for j in eachindex(ϕ)
>             prop_e[j] = exp( -im * ele[i] * xplusy[j] * dt/2.0)
>         end
>
>         for j in eachindex(ϕ)
>             ϕ[j] *= prop_x[j] * prop_e[j]
>         end
>         p_fft! * ϕ
>         for j in eachindex(ϕ)
>             ϕ[j] *= prop_p[j]
>         end
>         p_fft! \ ϕ
>         for j in eachindex(ϕ)
>             ϕ[j] *= prop_x[j] * prop_e[j]
>         end
>         ########## autocorrelation function σ(t)
>         if flags[1] == 1
>             for j in eachindex(ϕ)
>                 σ[i] += conj(ϕg[j]) * ϕ[j]
>             end
>         end
>         ########## dipole acceleration a(t)
>         if flags[2] == 1
>             for j in eachindex(ϕ)
>                 a[i] += abs(ϕ[j])^2 * (pvpx[j] + 2ele[i])
>             end
>         end
>         ########## ionization probability ip(t)
>         if flags[3] == 1
>             for j1 in n1:n2
>                 for j2 in 1:ns
>                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2
>                 end
>             end
>             for j1 in [1:n1-1; n2+1:ns]
>                 for j2 in n1:n2
>                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2
>                 end
>             end
>         end
>         ########## get momentum
>         if flags[4] == 1
>             for j in eachindex(ϕo)
>                 ϕo[j] = ϕ[j] * splitter[j] * exp( -im * A[i]*xplusy[j] )
>             end
>             for j in eachindex(p)
>                 pp[j] = p[j]^2 /2 * (nt-i) - p[j] *sum( A[i:nt] ) + sum(
> A²[1:nt] ) /2
>             end
>             for j2 in 1:ns
>                 for j1 in 1:ns
>                     ϕo[j1, j2] = ϕo[j1, j2] * exp( -im * (pp[j1] + pp[j2])
> * dt)
>                 end
>             end
>             p_fft! * ϕo
>             for j in eachindex(ϕp)
>                 ϕp[j] += ϕo[j]
>             end
>         end
>
>         ########## absorb boundary
>         if mod(i, 300) == 0
>             for j in eachindex(ϕ)
>                 ϕ[j] *= absorb[j]
>             end
>         end
>
>         if (mod(i, 500) == 0)
>             println("i = $i")
>             flush(STDOUT)
>         end
>     end
>     σ *= dx^2
>     a *= dx^2
>     ip *= dx^2
>
>     save("data/fs.jld", "ϕ", ϕ)
>     if flags[1] == 1
>         save("data/sigma.jld", "σ", σ)
>     end
>     if flags[2] == 1
>         save("data/a.jld", "a", a)
>     end
>     if flags[3] == 1
>         save("data/ip.jld", "ip", ip)
>     end
>     if flags[4] == 1
>         save("data/pf.jld", "ϕp", ϕp)
>     end
>
>     #return σ, a, ip, ϕ
>     nothing
> end
>
>
>

Reply via email to