sorry, but I give the lines in the citing area below the table.

在 2016年3月30日星期三 UTC+8上午12:50:30,Milan Bouchet-Valat写道:
>
> Le mardi 29 mars 2016 à 09:43 -0700, 博陈 a écrit : 
> > I tried the built-in profiler, and find that the problem lies in 
> > lines I end  with ******, the result is shown below: 
> > that proved my guess, how can I pre-allocate these arrays? If I don't 
> > want to divide this code into several parts that calculate these 
> > arrays separately.  
> Can you show us which lines the numbers correspond to? There's no line 
> 211 in the script you posted. 
>
>
> Regards 
>
> > | lines | backtrace | 
> > |   169 |      9011 |  *********** 
> > |   173 |      1552 | 
> > |   175 |      2604 | 
> > |   179 |      2906 | 
> > |   181 |      1541 | 
> > |   192 |      4458 | 
> > |   211 |     13332 ************| 
> > |   214 |      8431 |************ 
> > |   218 |     15871 |*********** 
> > |   221 |      2538 | 
> > 
> > > Have you tried: 
> > > 
> > > (a) calling @code_typewarn on your function 
> > > (b) using the built-in profiler? 
> > > 
> > > 
> > > On Tue, Mar 29, 2016 at 9:23 AM, 博陈 <chenph...@gmail.com> wrote: 
> > > > First of all, have a look at the result. 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > 
> > > > My code calculates the evolution of 1-d 2-electron system in the 
> electric field, some variables are calculated during the evolution. 
> > > > According to the result of @time evolution, my code must have a 
> pre-allocation problem. Before you see the long code, i suggest that the 
> hotspot might be around the Arrays prop_e, \phio, pp. I have learnt that I 
> can use m = Array(Float64, 1) outside a "for" loop and empty!(m) and 
> push!(m, new_m) inside the loop to pre-allocate the variable m, but in my 
> situations, I don't know how to pre-allocate these arrays. 
> > > > 
> > > > Below is the script (precisely, the main function) itself. 
> > > > 
> > > > function evolution(ϕ::Array{Complex{Float64}, 2}, 
> > > >                    ele::Array{Float64, 1}, dx::Float64, dt::Float64, 
> > > >                    flags::Tuple{Int64, Int64, Int64, Int64}) 
> > > >     ϕg = copy(ϕ) 
> > > >     FFTW.set_num_threads(8) 
> > > >     ns = length( ϕ[:, 1] ) 
> > > >     x = get_x(ns, dx) 
> > > >     p = get_p(ns, dx) 
> > > >     if flags[4] == 1 
> > > >         pp = similar(p) 
> > > >         A = -cumsum(ele) * dt 
> > > >         A² = A.*A 
> > > >         ##### splitting 
> > > >         r_sp = 150.0 
> > > >         δ_sp = 5.0 
> > > >         splitter = Array(Float64, ns, ns) 
> > > >     end 
> > > >     nt = length( ele ) 
> > > > 
> > > >     # ##### Pre-allocate result and temporary arrays 
> > > >     #if flags[1] == 1 
> > > >     σ = zeros(Complex128, nt) 
> > > >     #end 
> > > >     #if flags[2] == 1 
> > > >     a = zeros(Float64, nt) 
> > > >     #end 
> > > >     #if flags[3] == 1 
> > > >     r_ionization = 20.0 
> > > >     n1 = round(Int, ns/2 - r_ionization/dx) 
> > > >     n2 = round(Int, ns/2 + r_ionization/dx) 
> > > >     ip = zeros(Float64, nt) 
> > > >     #end 
> > > > 
> > > >     ##### FFT plan 
> > > >     p_fft! = plan_fft!( similar(ϕ), flags=FFTW.MEASURE ) 
> > > > 
> > > >     prop_x = similar( ϕ ) 
> > > >     prop_p = similar( prop_x ) 
> > > >     prop_e = similar( prop_x ) 
> > > >     # this two versions just cost the same time 
> > > >     xplusy = Array(Float64, ns, ns) 
> > > >     #xplusy = Array( Float64, ns^2) 
> > > > 
> > > >     ##### absorb boundary 
> > > >     r_a = ns * dx /2 - 50.0 
> > > >     δ = 10.0 
> > > >     absorb = Array(Float64, ns, ns) 
> > > > 
> > > >     k0 = 2π / (ns * dx) 
> > > > 
> > > >     @inbounds for j in 1:ns 
> > > >         @inbounds for i in 1:ns 
> > > >             prop_x[i, j] = exp( -im * get_potential(x[i], x[j]) * dt 
> / 2 ) 
> > > >             prop_p[i, j] = exp( -im * (p[i]^2 + p[j]^2)/2 * dt ) 
> > > > 
> > > >             xplusy[i, j] = x[i] + x[j] 
> > > > 
> > > >             absorb[i, j] = (1.0 - get_out(x[i], r_a, δ ))* (1.0 - 
> get_out(x[j], 
> > > >              r_a, δ)) 
> > > >         end 
> > > >     end 
> > > > 
> > > >     if flags[2] == 1 
> > > >         pvpx = Array(Float64, ns, ns) 
> > > >         @inbounds for j in 1:ns 
> > > >             @inbounds for i in 1:ns 
> > > >                 pvpx[i, j] = get_pvpx(x[i], x[j]) 
> > > >             end 
> > > >         end 
> > > >     end 
> > > > 
> > > >     if flags[4] == 1 
> > > >         ϕo = zeros(Complex128, ns, ns) 
> > > >         ϕp = zeros(Complex128, ns, ns) 
> > > >         @inbounds for  j in 1:ns 
> > > >             @inbounds for  i in 1:ns 
> > > >                 splitter[i, j] = get_out(x[i], r_sp, δ_sp) * 
> get_out(x[j], r_sp, δ_sp) 
> > > >             end 
> > > >         end 
> > > >     end 
> > > > 
> > > >     for i in 1:nt 
> > > >         for j in eachindex(ϕ) 
> > > >             prop_e[j] = exp( -im * ele[i] * xplusy[j] * dt/2.0) 
> ************************************169 
> > > >         end 
> > > > 
> > > >         for j in eachindex(ϕ) 
> > > >             ϕ[j] *= prop_x[j] * prop_e[j] 
> > > >         end 
> > > >         p_fft! * ϕ 
> > > >         for j in eachindex(ϕ) 
> > > >             ϕ[j] *= prop_p[j] 
> > > >         end 
> > > >         p_fft! \ ϕ 
> > > >         for j in eachindex(ϕ) 
> > > >             ϕ[j] *= prop_x[j] * prop_e[j] 
> > > >         end 
> > > >         ########## autocorrelation function σ(t) 
> > > >         if flags[1] == 1 
> > > >             for j in eachindex(ϕ) 
> > > >                 σ[i] += conj(ϕg[j]) * ϕ[j] 
> > > >             end 
> > > >         end 
> > > >         ########## dipole acceleration a(t) 
> > > >         if flags[2] == 1 
> > > >             for j in eachindex(ϕ) 
> > > >                 a[i] += abs(ϕ[j])^2 * (pvpx[j] + 2ele[i]) 
> > > >             end 
> > > >         end 
> > > >         ########## ionization probability ip(t) 
> > > >         if flags[3] == 1 
> > > >             for j1 in n1:n2 
> > > >                 for j2 in 1:ns 
> > > >                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2 
> > > >                 end 
> > > >             end 
> > > >             for j1 in [1:n1-1; n2+1:ns] 
> > > >                 for j2 in n1:n2 
> > > >                     ip[i] += abs( ϕ[j2+ns*(j1-1)] )^2 
> > > >                 end 
> > > >             end 
> > > >         end 
> > > >         ########## get momentum 
> > > >         if flags[4] == 1 
> > > >             for j in eachindex(ϕo) 
> > > >                 ϕo[j] = ϕ[j] * splitter[j] * exp( -im * 
> A[i]*xplusy[j] ) **********************************211 
> > > >             end 
> > > >             for j in eachindex(p) 
> > > >                 pp[j] = p[j]^2 /2 * (nt-i) - p[j] *sum( A[i:nt] ) + 
> sum( A²[1:nt] ) /2 ******************214 
> > > >             end 
> > > >             for j2 in 1:ns 
> > > >                 for j1 in 1:ns 
> > > >                     ϕo[j1, j2] = ϕo[j1, j2] * exp( -im * (pp[j1] + 
> pp[j2]) * dt)************************218 
> > > >                 end 
> > > >             end 
> > > >             p_fft! * ϕo 
> > > >             for j in eachindex(ϕp) 
> > > >                 ϕp[j] += ϕo[j] 
> > > >             end 
> > > >         end 
> > > > 
> > > >         ########## absorb boundary 
> > > >         if mod(i, 300) == 0 
> > > >             for j in eachindex(ϕ) 
> > > >                 ϕ[j] *= absorb[j] 
> > > >             end 
> > > >         end 
> > > > 
> > > >         if (mod(i, 500) == 0) 
> > > >             println("i = $i") 
> > > >             flush(STDOUT) 
> > > >         end 
> > > >     end 
> > > >     σ *= dx^2 
> > > >     a *= dx^2 
> > > >     ip *= dx^2 
> > > > 
> > > >     save("data/fs.jld", "ϕ", ϕ) 
> > > >     if flags[1] == 1 
> > > >         save("data/sigma.jld", "σ", σ) 
> > > >     end 
> > > >     if flags[2] == 1 
> > > >         save("data/a.jld", "a", a) 
> > > >     end 
> > > >     if flags[3] == 1 
> > > >         save("data/ip.jld", "ip", ip) 
> > > >     end 
> > > >     if flags[4] == 1 
> > > >         save("data/pf.jld", "ϕp", ϕp) 
> > > >     end 
> > > > 
> > > >     #return σ, a, ip, ϕ 
> > > >     nothing 
> > > > end 
> > > > 
> > > > 
> > > 
>

Reply via email to