I confirm that I can't get Julia to synthesize a `vfmadd` instruction
either... Sorry for sending you on a wild goose chase.

-erik

On Wed, Sep 21, 2016 at 9:33 PM, Yichao Yu <yyc1...@gmail.com> wrote:

> On Wed, Sep 21, 2016 at 9:29 PM, Erik Schnetter <schnet...@gmail.com>
> wrote:
> > On Wed, Sep 21, 2016 at 9:22 PM, Chris Rackauckas <rackd...@gmail.com>
> > wrote:
> >>
> >> I'm not seeing `@fastmath` apply fma/muladd. I rebuilt the sysimg and
> now
> >> I get results where g and h apply muladd/fma in the native code, but a
> new
> >> function k which is `@fastmath` inside of f does not apply muladd/fma.
> >>
> >> https://gist.github.com/ChrisRackauckas/b239e33b4b52bcc28f3922c673a259
> 10
> >>
> >> Should I open an issue?
> >
> >
> > In your case, LLVM apparently thinks that `x + x + 3` is faster to
> calculate
> > than `2x+3`. If you use a less round number than `2` multiplying `x`, you
> > might see a different behaviour.
>
> I've personally never seen llvm create fma from mul and add. We might
> not have the llvm passes enabled if LLVM is capable of doing this at
> all.
>
> >
> > -erik
> >
> >
> >> Note that this is on v0.6 Windows. On Linux the sysimg isn't rebuilding
> >> for some reason, so I may need to just build from source.
> >>
> >> On Wednesday, September 21, 2016 at 6:22:06 AM UTC-7, Erik Schnetter
> >> wrote:
> >>>
> >>> On Wed, Sep 21, 2016 at 1:56 AM, Chris Rackauckas <rack...@gmail.com>
> >>> wrote:
> >>>>
> >>>> Hi,
> >>>>   First of all, does LLVM essentially fma or muladd expressions like
> >>>> `a1*x1 + a2*x2 + a3*x3 + a4*x4`? Or is it required that one
> explicitly use
> >>>> `muladd` and `fma` on these types of instructions (is there a macro
> for
> >>>> making this easier)?
> >>>
> >>>
> >>> Yes, LLVM will use fma machine instructions -- but only if they lead to
> >>> the same round-off error as using separate multiply and add
> instructions. If
> >>> you do not care about the details of conforming to the IEEE standard,
> then
> >>> you can use the `@fastmath` macro that enables several optimizations,
> >>> including this one. This is described in the manual
> >>> <http://docs.julialang.org/en/release-0.5/manual/
> performance-tips/#performance-annotations>.
> >>>
> >>>
> >>>>   Secondly, I am wondering if my setup is no applying these operations
> >>>> correctly. Here's my test code:
> >>>>
> >>>> f(x) = 2.0x + 3.0
> >>>> g(x) = muladd(x,2.0, 3.0)
> >>>> h(x) = fma(x,2.0, 3.0)
> >>>>
> >>>> @code_llvm f(4.0)
> >>>> @code_llvm g(4.0)
> >>>> @code_llvm h(4.0)
> >>>>
> >>>> @code_native f(4.0)
> >>>> @code_native g(4.0)
> >>>> @code_native h(4.0)
> >>>>
> >>>> Computer 1
> >>>>
> >>>> Julia Version 0.5.0-rc4+0
> >>>> Commit 9c76c3e* (2016-09-09 01:43 UTC)
> >>>> Platform Info:
> >>>>   System: Linux (x86_64-redhat-linux)
> >>>>   CPU: Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz
> >>>>   WORD_SIZE: 64
> >>>>   BLAS: libopenblas (DYNAMIC_ARCH NO_AFFINITY Haswell)
> >>>>   LAPACK: libopenblasp.so.0
> >>>>   LIBM: libopenlibm
> >>>>   LLVM: libLLVM-3.7.1 (ORCJIT, broadwell)
> >>>
> >>>
> >>> This looks good, the "broadwell" architecture that LLVM uses should
> imply
> >>> the respective optimizations. Try with `@fastmath`.
> >>>
> >>> -erik
> >>>
> >>>
> >>>
> >>>
> >>>>
> >>>> (the COPR nightly on CentOS7) with
> >>>>
> >>>> [crackauc@crackauc2 ~]$ lscpu
> >>>> Architecture:          x86_64
> >>>> CPU op-mode(s):        32-bit, 64-bit
> >>>> Byte Order:            Little Endian
> >>>> CPU(s):                16
> >>>> On-line CPU(s) list:   0-15
> >>>> Thread(s) per core:    1
> >>>> Core(s) per socket:    8
> >>>> Socket(s):             2
> >>>> NUMA node(s):          2
> >>>> Vendor ID:             GenuineIntel
> >>>> CPU family:            6
> >>>> Model:                 79
> >>>> Model name:            Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz
> >>>> Stepping:              1
> >>>> CPU MHz:               1200.000
> >>>> BogoMIPS:              6392.58
> >>>> Virtualization:        VT-x
> >>>> L1d cache:             32K
> >>>> L1i cache:             32K
> >>>> L2 cache:              256K
> >>>> L3 cache:              25600K
> >>>> NUMA node0 CPU(s):     0-7
> >>>> NUMA node1 CPU(s):     8-15
> >>>>
> >>>>
> >>>>
> >>>> I get the output
> >>>>
> >>>> define double @julia_f_72025(double) #0 {
> >>>> top:
> >>>>   %1 = fmul double %0, 2.000000e+00
> >>>>   %2 = fadd double %1, 3.000000e+00
> >>>>   ret double %2
> >>>> }
> >>>>
> >>>> define double @julia_g_72027(double) #0 {
> >>>> top:
> >>>>   %1 = call double @llvm.fmuladd.f64(double %0, double 2.000000e+00,
> >>>> double 3.000000e+00)
> >>>>   ret double %1
> >>>> }
> >>>>
> >>>> define double @julia_h_72029(double) #0 {
> >>>> top:
> >>>>   %1 = call double @llvm.fma.f64(double %0, double 2.000000e+00,
> double
> >>>> 3.000000e+00)
> >>>>   ret double %1
> >>>> }
> >>>> .text
> >>>> Filename: fmatest.jl
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> Source line: 1
> >>>> addsd %xmm0, %xmm0
> >>>> movabsq $139916162906520, %rax  # imm = 0x7F40C5303998
> >>>> addsd (%rax), %xmm0
> >>>> popq %rbp
> >>>> retq
> >>>> nopl (%rax,%rax)
> >>>> .text
> >>>> Filename: fmatest.jl
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> Source line: 2
> >>>> addsd %xmm0, %xmm0
> >>>> movabsq $139916162906648, %rax  # imm = 0x7F40C5303A18
> >>>> addsd (%rax), %xmm0
> >>>> popq %rbp
> >>>> retq
> >>>> nopl (%rax,%rax)
> >>>> .text
> >>>> Filename: fmatest.jl
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> movabsq $139916162906776, %rax  # imm = 0x7F40C5303A98
> >>>> Source line: 3
> >>>> movsd (%rax), %xmm1           # xmm1 = mem[0],zero
> >>>> movabsq $139916162906784, %rax  # imm = 0x7F40C5303AA0
> >>>> movsd (%rax), %xmm2           # xmm2 = mem[0],zero
> >>>> movabsq $139925776008800, %rax  # imm = 0x7F43022C8660
> >>>> popq %rbp
> >>>> jmpq *%rax
> >>>> nopl (%rax)
> >>>>
> >>>> It looks like explicit muladd or not ends up at the same native code,
> >>>> but is that native code actually doing an fma? The fma native is
> different,
> >>>> but from a discussion on the Gitter it seems that might be a software
> FMA?
> >>>> This computer is setup with the BIOS setting as LAPACK optimized or
> >>>> something like that, so is that messing with something?
> >>>>
> >>>> Computer 2
> >>>>
> >>>> Julia Version 0.6.0-dev.557
> >>>> Commit c7a4897 (2016-09-08 17:50 UTC)
> >>>> Platform Info:
> >>>>   System: NT (x86_64-w64-mingw32)
> >>>>   CPU: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz
> >>>>   WORD_SIZE: 64
> >>>>   BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)
> >>>>   LAPACK: libopenblas64_
> >>>>   LIBM: libopenlibm
> >>>>   LLVM: libLLVM-3.7.1 (ORCJIT, haswell)
> >>>>
> >>>>
> >>>> on a 4770k i7, Windows 10, I get the output
> >>>>
> >>>> ; Function Attrs: uwtable
> >>>> define double @julia_f_66153(double) #0 {
> >>>> top:
> >>>>   %1 = fmul double %0, 2.000000e+00
> >>>>   %2 = fadd double %1, 3.000000e+00
> >>>>   ret double %2
> >>>> }
> >>>>
> >>>> ; Function Attrs: uwtable
> >>>> define double @julia_g_66157(double) #0 {
> >>>> top:
> >>>>   %1 = call double @llvm.fmuladd.f64(double %0, double 2.000000e+00,
> >>>> double 3.000000e+00)
> >>>>   ret double %1
> >>>> }
> >>>>
> >>>> ; Function Attrs: uwtable
> >>>> define double @julia_h_66158(double) #0 {
> >>>> top:
> >>>>   %1 = call double @llvm.fma.f64(double %0, double 2.000000e+00,
> double
> >>>> 3.000000e+00)
> >>>>   ret double %1
> >>>> }
> >>>> .text
> >>>> Filename: console
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> Source line: 1
> >>>> addsd %xmm0, %xmm0
> >>>> movabsq $534749456, %rax        # imm = 0x1FDFA110
> >>>> addsd (%rax), %xmm0
> >>>> popq %rbp
> >>>> retq
> >>>> nopl (%rax,%rax)
> >>>> .text
> >>>> Filename: console
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> Source line: 2
> >>>> addsd %xmm0, %xmm0
> >>>> movabsq $534749584, %rax        # imm = 0x1FDFA190
> >>>> addsd (%rax), %xmm0
> >>>> popq %rbp
> >>>> retq
> >>>> nopl (%rax,%rax)
> >>>> .text
> >>>> Filename: console
> >>>> pushq %rbp
> >>>> movq %rsp, %rbp
> >>>> movabsq $534749712, %rax        # imm = 0x1FDFA210
> >>>> Source line: 3
> >>>> movsd dcabs164_(%rax), %xmm1  # xmm1 = mem[0],zero
> >>>> movabsq $534749720, %rax        # imm = 0x1FDFA218
> >>>> movsd (%rax), %xmm2           # xmm2 = mem[0],zero
> >>>> movabsq $fma, %rax
> >>>> popq %rbp
> >>>> jmpq *%rax
> >>>> nop
> >>>>
> >>>> This seems to be similar to the first result.
> >>>>
> >>>
> >>>
> >>>
> >>> --
> >>> Erik Schnetter <schn...@gmail.com>
> >>> http://www.perimeterinstitute.ca/personal/eschnetter/
> >
> >
> >
> >
> > --
> > Erik Schnetter <schnet...@gmail.com>
> > http://www.perimeterinstitute.ca/personal/eschnetter/
>



-- 
Erik Schnetter <schnet...@gmail.com>
http://www.perimeterinstitute.ca/personal/eschnetter/

Reply via email to