Hi all,

I made a code with rbOOmit for an acoustic horn problem.  It seems the
greedy training process works, but if I run online with any inputs, the
output and output bound are always zeros.  The way I did is

        // Read in the reduced basis data
        rb_eval.read_offline_data_from_files();

        // Set the parameters to online_mu_vector
        rb_eval.set_current_parameters(online_mu_vector);
        rb_eval.print_current_parameters();

        // Now do the Online solve using the precomputed reduced basis
        rb_eval.rb_solve(online_N);

        // Print out outputs as well as the corresponding output error
bounds.
        std::cout << "output = " << rb_eval.RB_outputs[0]
            << ", bound = " << rb_eval.RB_output_error_bounds[0] <<
std::endl;

I wonder if there is something I miss to handle complex outputs and output
bounds.

K. Lee.
------------------------------------------------------------------------------
RSA&#174; Conference 2012
Save $700 by Nov 18
Register now&#33;
http://p.sf.net/sfu/rsa-sfdev2dev1
_______________________________________________
Libmesh-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/libmesh-users

Reply via email to