Hi all,
I made a code with rbOOmit for an acoustic horn problem. It seems the
greedy training process works, but if I run online with any inputs, the
output and output bound are always zeros. The way I did is
// Read in the reduced basis data
rb_eval.read_offline_data_from_files();
// Set the parameters to online_mu_vector
rb_eval.set_current_parameters(online_mu_vector);
rb_eval.print_current_parameters();
// Now do the Online solve using the precomputed reduced basis
rb_eval.rb_solve(online_N);
// Print out outputs as well as the corresponding output error
bounds.
std::cout << "output = " << rb_eval.RB_outputs[0]
<< ", bound = " << rb_eval.RB_output_error_bounds[0] <<
std::endl;
I wonder if there is something I miss to handle complex outputs and output
bounds.
K. Lee.
------------------------------------------------------------------------------
RSA® Conference 2012
Save $700 by Nov 18
Register now!
http://p.sf.net/sfu/rsa-sfdev2dev1
_______________________________________________
Libmesh-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/libmesh-users