Hi K,

You shouldn't need to do anything special for the complex case. Send me 
your code if you like and I can have a look.

David




On 11/02/2011 09:08 AM, Kyunghoon Lee wrote:
> Hi all,
>
> I made a code with rbOOmit for an acoustic horn problem.  It seems the
> greedy training process works, but if I run online with any inputs, the
> output and output bound are always zeros.  The way I did is
>
>          // Read in the reduced basis data
>          rb_eval.read_offline_data_from_files();
>
>          // Set the parameters to online_mu_vector
>          rb_eval.set_current_parameters(online_mu_vector);
>          rb_eval.print_current_parameters();
>
>          // Now do the Online solve using the precomputed reduced basis
>          rb_eval.rb_solve(online_N);
>
>          // Print out outputs as well as the corresponding output error
> bounds.
>          std::cout<<  "output = "<<  rb_eval.RB_outputs[0]
>              <<  ", bound = "<<  rb_eval.RB_output_error_bounds[0]<<
> std::endl;
>
> I wonder if there is something I miss to handle complex outputs and output
> bounds.
>
> K. Lee.
> ------------------------------------------------------------------------------
> RSA&#174; Conference 2012
> Save $700 by Nov 18
> Register now&#33;
> http://p.sf.net/sfu/rsa-sfdev2dev1
> _______________________________________________
> Libmesh-users mailing list
> [email protected]
> https://lists.sourceforge.net/lists/listinfo/libmesh-users

------------------------------------------------------------------------------
RSA&#174; Conference 2012
Save $700 by Nov 18
Register now&#33;
http://p.sf.net/sfu/rsa-sfdev2dev1
_______________________________________________
Libmesh-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/libmesh-users

Reply via email to