Dear René,

ah, it seems I overlooked that sentence. Thanks for clearing this up. I agree, filtering based on probability and then weighing based on cost is probably very similar to doing it vice versa.

Kind Regards,

Elias

On 18 Mar 2021, at 10:12, René Pickhardt wrote:

Dear Elias,

Thanks for your kind words!

In the paper we suggest clients sort paths by probability but skip the ones that charge fees that are too high for a user, which could be defined in a user setting. I should have repeated that when I expressed that implicitly
with this sentence in my mail:

"This means that nodes which provide a lot of liquidity and thus utility might be able to charge higher fees (as long as they are small enough so
that users are willing to pay them)"

I think that is very similar to your suggestion and of course one could
include not only fees but other criteria while filtering.

In general I think it is reasonable to be aware of the most likely path as the inverse probability is the number of expected attempts. This if due to failures and updating the knowledge and channel probabilities the remaining path probabilities drop below a certain (configurable) value one might want
to stop trying or consider a more expensive path.

So if for example a user was to say I am willing to pay up to 0.5% of the amount in routing fees but after a few attempts the likeliest path has only a 0.01% chance a client could say something like: "it is very unlikely to deliver the payment but if you pay 0.7% fees there is a chance (want to try?)" Of course at some point onchain / opening a new channel might be
cheaper which would contribute to the potential emerging fee market.

Instead of filtering paths by fees one could also weight the probabilities with the fees. An easy (but maybe not optimal) approach for that would be to multiply the log probabilities (which have to be low for high success) with the fees. That being said I think the main important result is that we should always be aware of (multi)path probabilities during the trial and
error phase especially in order to make splitting decisions and to
determine when to stop trying

Best Rene

Elias Rohrer <l...@tnull.de> schrieb am Do., 18. März 2021, 09:34:

Dear René,

thank you for the great work!

One quick question regarding the consequence you mentioned: it seems
plausible that manipulating the path choices would become harder, if the ability of doing so was correlated with the capacity locked in the network. However, if paths were only chosen regarding the probability of payment success (and neglecting accruing fees), couldn't high-capacity nodes in absence of competition simply raise their fee levels indefinitely, since
they would be chosen regardless? Do you have any ideas how to protect
against this?

I imagine that some kind of 'mixed' strategy could be reasonable, in which certain paths are pre-filtered based on the probability of payment success,
and then the final path is selected along the lines of the currently
deployed fee rate/CLTV risk assessment?

Kind Regards,

Elias

On 17 Mar 2021, at 13:50, René Pickhardt via Lightning-dev wrote:

Dear fellow Lightning Network developers,

I am very pleased to share with you some research progress [0] with
respect to achieving better payment path finding and a better reliability
of the payment process.

TL;DR summary: In payment (multi)path finding use the (multi)paths with the highest success probability instead of the shortest or cheapest ones.
(multi)path success probability is the product of channel success
probabilities. Given current data crawled on the Network the channel
success probability grows with the capacity of the channel and with smaller
amounts that are to be sent (which is both intuitively obvious).
(Multi)path success probability thus declines exponentially the more
uncertain channels are included.

I understand that the actual payment path finding is not part of the spec
but I think my results should be relevant to the list since:

a) The payment pathfinding is currently based on trial and error approach which has consequences that have not been studied well in the context of
the Lightning Network
b) All implementations will use some heuristics in order to achieve
pathfinding.
c) Quick path finding is a crucial for a good user experience.
d) The uncertainty of payment paths is frequently quoted as a major
criticism of the Lightning Network (c.f. [1]) and I believe the methodology
of this paper can be used to address this.

The main breakthrough is that  a very simple model that puts the
uncertainty of channel balances at its heart. We belief the uncertainty of channel balance values is the main reason why some payments take several attempts and thus take more time. With the help of probability theory we
are able to define the channel success and failure probabilities and
similarly (multi)path success and failure probabilities. Other Failure
reasons could also be included to the probability distributions.

With the help of crawling small samples of the network we observe that the probability distributions of the channel balances can be estimated well with a uniform distribution (which was a little bit surprising) but leads to surprisingly easy formulas. We are able to quantify the uncertainty in the channels and use negative Bernoulli trials to compute the expected number of attempts that are necessary to deliver a payment of a particular amount from one node to another participant of the network. This can be used to abort the trial and error path finding if the probability becomes
to low (expected number of attempts too high)

We can mathematically show what people already knew (and draw conclusions
like the mentioned ones from it):

a) smaller amounts have higher success probabilities
b) the success probability declines exponentially with the number of
uncertain channels in a (multi)path.
c) depending on the payment pair, amount and splitting strategy it can be
decided into how many parts a payment should be split to achieve the
highest success probability.
d) In particular for small amounts splitting almost never makes sense.

We demonstrate that sorting paths by their descending success probability
during the trial and error payment process (instead of currently used
heuristics like fees or route length) and updating the probabilities from current failures decreases the number of average attempts and produces a
much faster delivery of payments.

Additionally we looked what happened if BOLT14 [2] was implemented or
nodes otherwise would pro-actively rebalance their channels according to previous research [3] and realized that the observed prior distribution changes from uniform to normal. This is great as small payments become even more likely (as one would intuitively assume and as previously showed) Our results show that probabilisitic path finding on a rebalanced network works even better (as in fewer failed attempts) which is yet another hint why
BOLT14 might be a good idea. However as mentioned the results can be
implemented even without BOLT14 or without other protocol changes by any
implementation.

One consequence from the paper that is not discussed heavily within the paper that I find pretty interesting is that if implementations follow the recommendation to use a probabilistic approach they will tend to route payments along high capacity channels. While the fee based routing can
easily be gamed by dumping fees it is much harder to provide more
liquidity. And if done this would actually provide a service to the
network. This means that nodes which provide a lot of liquidity and thus utility might be able to charge higher fees (as long as they are small enough so that users are willing to pay them) which would probably allow
the emergence of a real routing fee market.

One note on the question of MPP: In the last couple weeks I have been
collaborating with Christian Decker. I belief (by using the methodology
from this paper) to also have a definite solution to the question of:

How to split a payment into k parts and how many funds to allocate to each
path to increase the (multi)path success probability.

While this is is not addressed in the attached paper as we still need to run evaluations I can already share that an equal sized split as used in the paper (and by some implementations) is not preferable as one can easily
see from this example:
Imagine one is to deliver 100 satoshi and has to paths with 1 uncertain channel on each path. The first of capacity 101 and the second of 51. Obviously trying to send 100 satoshi along the 101 capacity channel is bad.
Similarly splitting 50/50 and sending 50 Satoshi along the 51 satoshi
capacity channel is also bad. Thus a split that allocates for example 67 Satoshi to the 101 capacity and 33 to the 51 satoshi channel seems way more reasonable. Actually 75/25 would probably be the best solution for such a setting. And no it is only random coincident that a binary splitter would
have arrived at that split eventually (after potential miss trials)
There is way more math theory of how to actually solve the optimization
problem in the general case and how to find a split and paths that
maximizes the probability of the attempts. I cannot share these results yet but I am pretty confident that there will be updates on that end very soon.

with kind regards Rene

[0]: https://arxiv.org/abs/2103.08576 Security and Privacy of Lightning
Network Payments with Uncertain Channel Balances
[1]:
https://www.whatbitcoindid.com/podcast/peter-rizuns-lightning-critique-fud-or-fair
[2]: https://github.com/lightningnetwork/lightning-rfc/pull/780
[3]:
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-December/002406.html

--
https://www.rene-pickhardt.de

Skype: rene.pickhardt

_______________________________________________
Lightning-dev mailing list
Lightning-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/lightning-dev

_______________________________________________
Lightning-dev mailing list
Lightning-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/lightning-dev



_______________________________________________
Lightning-dev mailing list
Lightning-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/lightning-dev

Reply via email to