On Thu, Mar 16, 2017 at 10:56:16AM +0000, Ard Biesheuvel wrote:
> The arm32 kernel decompresses itself to the base of DRAM unconditionally,
> and so it is the EFI stub's job to ensure that the region is available.
> 
> Currently, we do this by creating an allocation there, and giving up if
> that fails. However, any boot services regions occupying this area are
> not an issue, given that the decompressor executes strictly after the
> stub calls ExitBootServices().
> 
> So let's try a bit harder to proceed if the initial allocation fails,
> and check whether any memory map entries occupying the region may be
> considered safe.
> 
> Reported-by: Eugene Cohen <[email protected]>
> Signed-off-by: Ard Biesheuvel <[email protected]>
> ---
> 
> NOTE: This patch appears to have uncovered a bug in DxeCore's AllocatePages
> routine. If the first allocate_pages(EFI_ALLOCATE_ADDRESS) call fails, we may
> still end up with a memory map that reflects a kind of limbo state where the
> intended allocation is carved out and partially converted.
> 
> For example, starting from
> 
> 0x000040000000-0x00004007ffff [ConventionalMemory ]
> 0x000040080000-0x00004009ffff [Boot Data          ]
> 0x0000400a0000-0x000047ffffff [ConventionalMemory ]
> 
> the failed allocation of 32 MB of LoaderData @ 0x4000_0000 will result in
> 
> 0x000040000000-0x00004007ffff [Loader Data        ]
> 0x000040080000-0x00004009ffff [Boot Data          ]
> 0x0000400a0000-0x000047ffffff [ConventionalMemory ]
> 
> after which scanning the region for LoaderData regions (which we should reject
> given that they could be freed and replaced with, e.g., runtime services data
> regions) will always fail.
> 
> For this reason, the allocate_pages(EFI_ALLOCATE_ADDRESS) has been modified to
> use EfiBootServicesData instead. In the mean time, I will report this to the
> EDK2 development mailing list.

That feels a little bit eeew, but I can't see it breaking anything.

>  drivers/firmware/efi/libstub/arm32-stub.c | 137 +++++++++++++++++---
>  1 file changed, 117 insertions(+), 20 deletions(-)
> 
> diff --git a/drivers/firmware/efi/libstub/arm32-stub.c 
> b/drivers/firmware/efi/libstub/arm32-stub.c
> index e1f0b28e1dcb..4e1b6478986e 100644
> --- a/drivers/firmware/efi/libstub/arm32-stub.c
> +++ b/drivers/firmware/efi/libstub/arm32-stub.c
> @@ -63,6 +63,121 @@ void free_screen_info(efi_system_table_t *sys_table_arg, 
> struct screen_info *si)
>       efi_call_early(free_pool, si);
>  }
>  
> +static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
> +                                     unsigned long dram_base,
> +                                     unsigned long *reserve_addr,
> +                                     unsigned long *reserve_size)
> +{
> +     efi_physical_addr_t alloc_addr;
> +     efi_memory_desc_t *memory_map;
> +     unsigned long nr_pages, map_size, desc_size, buff_size;
> +     efi_status_t status;
> +     unsigned long l;
> +
> +     struct efi_boot_memmap map = {
> +             .map            = &memory_map,
> +             .map_size       = &map_size,
> +             .desc_size      = &desc_size,
> +             .desc_ver       = NULL,
> +             .key_ptr        = NULL,
> +             .buff_size      = &buff_size,
> +     };
> +
> +     /*
> +      * Reserve memory for the uncompressed kernel image. This is
> +      * all that prevents any future allocations from conflicting
> +      * with the kernel. Since we can't tell from the compressed
> +      * image how much DRAM the kernel actually uses (due to BSS
> +      * size uncertainty) we allocate the maximum possible size.
> +      * Do this very early, as prints can cause memory allocations
> +      * that may conflict with this.
> +      */
> +     alloc_addr = dram_base;
> +     *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
> +     nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
> +     status = sys_table_arg->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
> +                                                      EFI_BOOT_SERVICES_DATA,
> +                                                      nr_pages, &alloc_addr);
> +     if (status == EFI_SUCCESS) {
> +             *reserve_addr = alloc_addr;
> +             return EFI_SUCCESS;
> +     }
> +
> +     /*
> +      * If the allocation above failed, we may still be able to proceed:
> +      * if the only allocations in the region are of types that will be
> +      * released to the OS after ExitBootServices(), the decompressor can
> +      * safely overwrite them.
> +      */
> +     status = efi_get_memory_map(sys_table_arg, &map);
> +     if (status != EFI_SUCCESS) {
> +             pr_efi_err(sys_table_arg,
> +                        "reserve_kernel_base(): Unable to retrieve memory 
> map.\n");
> +             return status;
> +     }
> +
> +     for (l = 0; l < map_size; l += desc_size) {
> +             efi_memory_desc_t *desc;
> +             u64 start, end;
> +
> +             desc = (void *)memory_map + l;
> +             start = desc->phys_addr;
> +             end = start + desc->num_pages * EFI_PAGE_SIZE;
> +
> +             /* does this entry cover the region? */

Nitpick: the logic tests the opposite of what the comment describes.
                /* Skip if entry does not intersect with region */
?

Anyway, that's minor.

Reviewed-by: Leif Lindholm <[email protected]>

> +             if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
> +                 end <= dram_base)
> +                     continue;
> +
> +             /* ignore types that are released to the OS anyway */
> +             switch (desc->type) {
> +             case EFI_BOOT_SERVICES_CODE:
> +             case EFI_BOOT_SERVICES_DATA:
> +                     /* these are safe -- ignore */
> +                     continue;
> +
> +             case EFI_CONVENTIONAL_MEMORY:
> +                     /*
> +                      * Reserve the intersection between this entry and the
> +                      * region.
> +                      */
> +                     start = max(start, (u64)dram_base);
> +                     end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
> +
> +                     status = efi_call_early(allocate_pages,
> +                                             EFI_ALLOCATE_ADDRESS,
> +                                             EFI_LOADER_DATA,
> +                                             (end - start) / EFI_PAGE_SIZE,
> +                                             &start);
> +                     if (status != EFI_SUCCESS) {
> +                             pr_efi_err(sys_table_arg,
> +                                     "reserve_kernel_base(): alloc 
> failed.\n");
> +                             goto out;
> +                     }
> +                     break;
> +
> +             case EFI_LOADER_CODE:
> +             case EFI_LOADER_DATA:
> +                     /*
> +                      * These regions may be released and reallocated for
> +                      * another purpose (including EFI_RUNTIME_SERVICE_DATA)
> +                      * at any time during the execution of the OS loader,
> +                      * so we cannot consider them as safe.
> +                      */
> +             default:
> +                     /*
> +                      * Treat any other allocation in the region as unsafe */
> +                     status = EFI_OUT_OF_RESOURCES;
> +                     goto out;
> +             }
> +     }
> +
> +     status = EFI_SUCCESS;
> +out:
> +     efi_call_early(free_pool, memory_map);
> +     return status;
> +}
> +
>  efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
>                                unsigned long *image_addr,
>                                unsigned long *image_size,
> @@ -71,10 +186,7 @@ efi_status_t handle_kernel_image(efi_system_table_t 
> *sys_table,
>                                unsigned long dram_base,
>                                efi_loaded_image_t *image)
>  {
> -     unsigned long nr_pages;
>       efi_status_t status;
> -     /* Use alloc_addr to tranlsate between types */
> -     efi_physical_addr_t alloc_addr;
>  
>       /*
>        * Verify that the DRAM base address is compatible with the ARM
> @@ -85,27 +197,12 @@ efi_status_t handle_kernel_image(efi_system_table_t 
> *sys_table,
>        */
>       dram_base = round_up(dram_base, SZ_128M);
>  
> -     /*
> -      * Reserve memory for the uncompressed kernel image. This is
> -      * all that prevents any future allocations from conflicting
> -      * with the kernel. Since we can't tell from the compressed
> -      * image how much DRAM the kernel actually uses (due to BSS
> -      * size uncertainty) we allocate the maximum possible size.
> -      * Do this very early, as prints can cause memory allocations
> -      * that may conflict with this.
> -      */
> -     alloc_addr = dram_base;
> -     *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
> -     nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
> -     status = sys_table->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
> -                                                  EFI_LOADER_DATA,
> -                                                  nr_pages, &alloc_addr);
> +     status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
> +                                  reserve_size);
>       if (status != EFI_SUCCESS) {
> -             *reserve_size = 0;
>               pr_efi_err(sys_table, "Unable to allocate memory for 
> uncompressed kernel.\n");
>               return status;
>       }
> -     *reserve_addr = alloc_addr;
>  
>       /*
>        * Relocate the zImage, so that it appears in the lowest 128 MB
> -- 
> 2.7.4
> 
--
To unsubscribe from this list: send the line "unsubscribe linux-efi" in
the body of a message to [email protected]
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Reply via email to