On Thu, Mar 16, 2017 at 10:56:16AM +0000, Ard Biesheuvel wrote:
> The arm32 kernel decompresses itself to the base of DRAM unconditionally,
> and so it is the EFI stub's job to ensure that the region is available.
>
> Currently, we do this by creating an allocation there, and giving up if
> that fails. However, any boot services regions occupying this area are
> not an issue, given that the decompressor executes strictly after the
> stub calls ExitBootServices().
>
> So let's try a bit harder to proceed if the initial allocation fails,
> and check whether any memory map entries occupying the region may be
> considered safe.
>
> Reported-by: Eugene Cohen <[email protected]>
> Signed-off-by: Ard Biesheuvel <[email protected]>
> ---
>
> NOTE: This patch appears to have uncovered a bug in DxeCore's AllocatePages
> routine. If the first allocate_pages(EFI_ALLOCATE_ADDRESS) call fails, we may
> still end up with a memory map that reflects a kind of limbo state where the
> intended allocation is carved out and partially converted.
>
> For example, starting from
>
> 0x000040000000-0x00004007ffff [ConventionalMemory ]
> 0x000040080000-0x00004009ffff [Boot Data ]
> 0x0000400a0000-0x000047ffffff [ConventionalMemory ]
>
> the failed allocation of 32 MB of LoaderData @ 0x4000_0000 will result in
>
> 0x000040000000-0x00004007ffff [Loader Data ]
> 0x000040080000-0x00004009ffff [Boot Data ]
> 0x0000400a0000-0x000047ffffff [ConventionalMemory ]
>
> after which scanning the region for LoaderData regions (which we should reject
> given that they could be freed and replaced with, e.g., runtime services data
> regions) will always fail.
>
> For this reason, the allocate_pages(EFI_ALLOCATE_ADDRESS) has been modified to
> use EfiBootServicesData instead. In the mean time, I will report this to the
> EDK2 development mailing list.
That feels a little bit eeew, but I can't see it breaking anything.
> drivers/firmware/efi/libstub/arm32-stub.c | 137 +++++++++++++++++---
> 1 file changed, 117 insertions(+), 20 deletions(-)
>
> diff --git a/drivers/firmware/efi/libstub/arm32-stub.c
> b/drivers/firmware/efi/libstub/arm32-stub.c
> index e1f0b28e1dcb..4e1b6478986e 100644
> --- a/drivers/firmware/efi/libstub/arm32-stub.c
> +++ b/drivers/firmware/efi/libstub/arm32-stub.c
> @@ -63,6 +63,121 @@ void free_screen_info(efi_system_table_t *sys_table_arg,
> struct screen_info *si)
> efi_call_early(free_pool, si);
> }
>
> +static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
> + unsigned long dram_base,
> + unsigned long *reserve_addr,
> + unsigned long *reserve_size)
> +{
> + efi_physical_addr_t alloc_addr;
> + efi_memory_desc_t *memory_map;
> + unsigned long nr_pages, map_size, desc_size, buff_size;
> + efi_status_t status;
> + unsigned long l;
> +
> + struct efi_boot_memmap map = {
> + .map = &memory_map,
> + .map_size = &map_size,
> + .desc_size = &desc_size,
> + .desc_ver = NULL,
> + .key_ptr = NULL,
> + .buff_size = &buff_size,
> + };
> +
> + /*
> + * Reserve memory for the uncompressed kernel image. This is
> + * all that prevents any future allocations from conflicting
> + * with the kernel. Since we can't tell from the compressed
> + * image how much DRAM the kernel actually uses (due to BSS
> + * size uncertainty) we allocate the maximum possible size.
> + * Do this very early, as prints can cause memory allocations
> + * that may conflict with this.
> + */
> + alloc_addr = dram_base;
> + *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
> + nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
> + status = sys_table_arg->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
> + EFI_BOOT_SERVICES_DATA,
> + nr_pages, &alloc_addr);
> + if (status == EFI_SUCCESS) {
> + *reserve_addr = alloc_addr;
> + return EFI_SUCCESS;
> + }
> +
> + /*
> + * If the allocation above failed, we may still be able to proceed:
> + * if the only allocations in the region are of types that will be
> + * released to the OS after ExitBootServices(), the decompressor can
> + * safely overwrite them.
> + */
> + status = efi_get_memory_map(sys_table_arg, &map);
> + if (status != EFI_SUCCESS) {
> + pr_efi_err(sys_table_arg,
> + "reserve_kernel_base(): Unable to retrieve memory
> map.\n");
> + return status;
> + }
> +
> + for (l = 0; l < map_size; l += desc_size) {
> + efi_memory_desc_t *desc;
> + u64 start, end;
> +
> + desc = (void *)memory_map + l;
> + start = desc->phys_addr;
> + end = start + desc->num_pages * EFI_PAGE_SIZE;
> +
> + /* does this entry cover the region? */
Nitpick: the logic tests the opposite of what the comment describes.
/* Skip if entry does not intersect with region */
?
Anyway, that's minor.
Reviewed-by: Leif Lindholm <[email protected]>
> + if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
> + end <= dram_base)
> + continue;
> +
> + /* ignore types that are released to the OS anyway */
> + switch (desc->type) {
> + case EFI_BOOT_SERVICES_CODE:
> + case EFI_BOOT_SERVICES_DATA:
> + /* these are safe -- ignore */
> + continue;
> +
> + case EFI_CONVENTIONAL_MEMORY:
> + /*
> + * Reserve the intersection between this entry and the
> + * region.
> + */
> + start = max(start, (u64)dram_base);
> + end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
> +
> + status = efi_call_early(allocate_pages,
> + EFI_ALLOCATE_ADDRESS,
> + EFI_LOADER_DATA,
> + (end - start) / EFI_PAGE_SIZE,
> + &start);
> + if (status != EFI_SUCCESS) {
> + pr_efi_err(sys_table_arg,
> + "reserve_kernel_base(): alloc
> failed.\n");
> + goto out;
> + }
> + break;
> +
> + case EFI_LOADER_CODE:
> + case EFI_LOADER_DATA:
> + /*
> + * These regions may be released and reallocated for
> + * another purpose (including EFI_RUNTIME_SERVICE_DATA)
> + * at any time during the execution of the OS loader,
> + * so we cannot consider them as safe.
> + */
> + default:
> + /*
> + * Treat any other allocation in the region as unsafe */
> + status = EFI_OUT_OF_RESOURCES;
> + goto out;
> + }
> + }
> +
> + status = EFI_SUCCESS;
> +out:
> + efi_call_early(free_pool, memory_map);
> + return status;
> +}
> +
> efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
> unsigned long *image_addr,
> unsigned long *image_size,
> @@ -71,10 +186,7 @@ efi_status_t handle_kernel_image(efi_system_table_t
> *sys_table,
> unsigned long dram_base,
> efi_loaded_image_t *image)
> {
> - unsigned long nr_pages;
> efi_status_t status;
> - /* Use alloc_addr to tranlsate between types */
> - efi_physical_addr_t alloc_addr;
>
> /*
> * Verify that the DRAM base address is compatible with the ARM
> @@ -85,27 +197,12 @@ efi_status_t handle_kernel_image(efi_system_table_t
> *sys_table,
> */
> dram_base = round_up(dram_base, SZ_128M);
>
> - /*
> - * Reserve memory for the uncompressed kernel image. This is
> - * all that prevents any future allocations from conflicting
> - * with the kernel. Since we can't tell from the compressed
> - * image how much DRAM the kernel actually uses (due to BSS
> - * size uncertainty) we allocate the maximum possible size.
> - * Do this very early, as prints can cause memory allocations
> - * that may conflict with this.
> - */
> - alloc_addr = dram_base;
> - *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
> - nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
> - status = sys_table->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
> - EFI_LOADER_DATA,
> - nr_pages, &alloc_addr);
> + status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
> + reserve_size);
> if (status != EFI_SUCCESS) {
> - *reserve_size = 0;
> pr_efi_err(sys_table, "Unable to allocate memory for
> uncompressed kernel.\n");
> return status;
> }
> - *reserve_addr = alloc_addr;
>
> /*
> * Relocate the zImage, so that it appears in the lowest 128 MB
> --
> 2.7.4
>
--
To unsubscribe from this list: send the line "unsubscribe linux-efi" in
the body of a message to [email protected]
More majordomo info at http://vger.kernel.org/majordomo-info.html