Hi Miquel,

> -----Original Message-----
> From: Miquel Raynal [mailto:miquel.ray...@bootlin.com]
> Sent: Wednesday, June 27, 2018 8:53 PM
> To: Naga Sureshkumar Relli <nagas...@xilinx.com>
> Cc: boris.brezil...@bootlin.com; rich...@nod.at; dw...@infradead.org;
> computersforpe...@gmail.com; marek.va...@gmail.com; f.faine...@gmail.com;
> mma...@broadcom.com; rog...@ti.com; la...@linux-mips.org; a...@thorsis.com;
> honghui.zh...@mediatek.com; linux-...@lists.infradead.org; 
> linux-kernel@vger.kernel.org;
> nagasureshkumarre...@gmail.com; Michal Simek <mich...@xilinx.com>
> Subject: Re: [[LINUX PATCH v10] 4/4] mtd: rawnand: pl353: Add basic driver 
> for arm
> pl353 smc nand interface
> 
> Hi Naga,
> 
> This is not an issue at all but I think [PATCH vX Y/Z] is a preferred and 
> shorter suffix, you
> can create it automatically by using
> 
>         git format-patch -v X <first_commit>^..<last_commit> --cover-letter
Ok.
> 
> 
> On Thu, 21 Jun 2018 12:12:31 +0530, Naga Sureshkumar Relli
> <naga.sureshkumar.re...@xilinx.com> wrote:
> 
> > Add driver for arm pl353 static memory controller nand interface with
> > HW ECC support. This controller is used in Xilinx Zynq SoC for
> > interfacing the NAND flash memory.
> >
> > Signed-off-by: Naga Sureshkumar Relli
> > <naga.sureshkumar.re...@xilinx.com>
> > ---
> > Changes in 10:
> >  - Typos correction like nand to NAND and soc to SOC etc..
> >  - Defined macros for the values in pl353_nand_calculate_hwecc()
> >  - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
> >  - Changed the return type form int to bool to the function
> >    onehot()
> >  - Removed udelay(1000) in pl353_cmd_function, as it is not required
> >  - Dropped ecc->hwctl = NULL in pl353_ecc_init()
> >  - Added an error message in pl353_ecc_init(), when there is no matching
> >    oobsize
> >  - Changed the variable from xnand to xnfc
> >  - Added logic to get mtd->name from DT, if it is specified in DT
> > Changes in v9:
> >  - Addressed the below comments given by Miquel
> >  - instead of using pl353_nand_write32, use directly writel_relaxed
> >  - Fixed check patch warnings
> >  - Renamed write_buf/read_buf to write_data_op/read_data_op
> >  - use BIT macro instead of 1 << nr
> >  - Use NAND_ROW_ADDR_3 flag
> >  - Use nand_wait_ready()
> >  - Removed swecc functions
> >  - Use address cycles as per size, instead of reading it from
> > Parameter page
> >  - Instead of writing too many patterns, use optional property Changes
> > in v8:
> >  - Added exec_op() implementation
> >  - Fixed the below v7 review comments
> >  - removed mtd_info from pl353_nand_info struct
> >  - Corrected ecc layout offsets
> >  - Added on-die ecc support
> > Changes in v7:
> >  - Currently not implemented the memclk rate adjustments. I will
> >    look into this later and once the basic driver is accepted.
> >  - Fixed GPL licence ident
> > Changes in v6:
> >  - Fixed the checkpatch.pl reported warnings
> >  - Using the address cycles information from the onfi param page
> >    earlier it is hardcoded to 5 in driver Changes in v5:
> >  - Configure the nand timing parameters as per the onfi spec Changes in v4:
> >  - Updated the driver to sync with pl353_smc driver APIs Changes in
> > v3:
> >  - implemented the proper error codes
> >  - further breakdown this patch to multiple sets
> >  - added the controller and driver details to Documentation section
> >  - updated the licenece to GPLv2
> >  - reorganized the pl353_nand_ecc_init function Changes in v2:
> >  - use "depends on" rather than "select" option in kconfig
> >  - remove unused variable parts
> > ---
> >  drivers/mtd/nand/raw/Kconfig      |    7 +
> >  drivers/mtd/nand/raw/Makefile     |    1 +
> >  drivers/mtd/nand/raw/pl353_nand.c | 1309
> > +++++++++++++++++++++++++++++++++++++
> >  3 files changed, 1317 insertions(+)
> >  create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
> >
> > diff --git a/drivers/mtd/nand/raw/Kconfig
> > b/drivers/mtd/nand/raw/Kconfig index 6871ff0..1c5d528 100644
> > --- a/drivers/mtd/nand/raw/Kconfig
> > +++ b/drivers/mtd/nand/raw/Kconfig
> > @@ -530,4 +530,11 @@ config MTD_NAND_MTK
> >       Enables support for NAND controller on MTK SoCs.
> >       This controller is found on mt27xx, mt81xx, mt65xx SoCs.
> >
> > +config MTD_NAND_PL353
> > +   tristate "ARM Pl353 NAND flash driver"
> > +   depends on MTD_NAND && ARM
> > +   depends on PL353_SMC
> > +   help
> > +     Enables support for PrimeCell Static Memory Controller PL353.
> > +
> >  endif # MTD_NAND
> > diff --git a/drivers/mtd/nand/raw/Makefile
> > b/drivers/mtd/nand/raw/Makefile index 165b7ef..1c702e1 100644
> > --- a/drivers/mtd/nand/raw/Makefile
> > +++ b/drivers/mtd/nand/raw/Makefile
> > @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)            +=
> hisi504_nand.o
> >  obj-$(CONFIG_MTD_NAND_BRCMNAND)            += brcmnand/
> >  obj-$(CONFIG_MTD_NAND_QCOM)                += qcom_nandc.o
> >  obj-$(CONFIG_MTD_NAND_MTK)         += mtk_ecc.o mtk_nand.o
> > +obj-$(CONFIG_MTD_NAND_PL353)               += pl353_nand.o
> >
> >  nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
> > nand-objs += nand_amd.o diff --git a/drivers/mtd/nand/raw/pl353_nand.c
> > b/drivers/mtd/nand/raw/pl353_nand.c
> > new file mode 100644
> > index 0000000..3a0acbd
> > --- /dev/null
> > +++ b/drivers/mtd/nand/raw/pl353_nand.c
> > @@ -0,0 +1,1309 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +/*
> > + * ARM PL353 NAND flash controller driver
> > + *
> > + * Copyright (C) 2017 Xilinx, Inc
> > + * Author: Punnaiah chowdary kalluri <punna...@xilinx.com>
> > + * Author: Naga Sureshkumar Relli <nagas...@xilinx.com>
> > + *
> > + */
> > +
> > +#include <linux/err.h>
> > +#include <linux/delay.h>
> > +#include <linux/interrupt.h>
> > +#include <linux/io.h>
> > +#include <linux/ioport.h>
> > +#include <linux/irq.h>
> > +#include <linux/module.h>
> > +#include <linux/moduleparam.h>
> > +#include <linux/mtd/mtd.h>
> > +#include <linux/mtd/rawnand.h>
> > +#include <linux/mtd/nand_ecc.h>
> > +#include <linux/mtd/partitions.h>
> > +#include <linux/of_address.h>
> > +#include <linux/of_device.h>
> > +#include <linux/of_platform.h>
> > +#include <linux/platform_device.h>
> > +#include <linux/slab.h>
> > +#include <linux/pl353-smc.h>
> > +#include <linux/clk.h>
> > +
> > +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> > +
> > +/* NAND flash driver defines */
> > +#define PL353_NAND_CMD_PHASE       1       /* End command valid in command
> phase */
> > +#define PL353_NAND_DATA_PHASE      2       /* End command valid in data 
> > phase
> */
> > +#define PL353_NAND_ECC_SIZE        512     /* Size of data for ECC 
> > operation */
> > +
> > +/* Flash memory controller operating parameters */
> > +
> > +#define PL353_NAND_ECC_CONFIG      (BIT(4)  |      /* ECC read at end of 
> > page */
> \
> > +                            (0 << 5))      /* No Jumping */
> > +
> > +/* AXI Address definitions */
> > +#define START_CMD_SHIFT            3
> > +#define END_CMD_SHIFT              11
> > +#define END_CMD_VALID_SHIFT        20
> > +#define ADDR_CYCLES_SHIFT  21
> > +#define CLEAR_CS_SHIFT             21
> > +#define ECC_LAST_SHIFT             10
> > +#define COMMAND_PHASE              (0 << 19)
> > +#define DATA_PHASE         BIT(19)
> > +
> > +#define PL353_NAND_ECC_LAST        BIT(ECC_LAST_SHIFT)     /* Set
> ECC_Last */
> > +#define PL353_NAND_CLEAR_CS        BIT(CLEAR_CS_SHIFT)     /* Clear chip
> select */
> > +
> > +#define ONDIE_ECC_FEATURE_ADDR     0x90
> > +#define PL353_NAND_ECC_BUSY_TIMEOUT        (1 * HZ)
> > +#define PL353_NAND_DEV_BUSY_TIMEOUT        (1 * HZ)
> > +#define PL353_NAND_LAST_TRANSFER_LENGTH    4
> > +#define PL353_NAND_ECC_VALID_SHIFT 24
> > +#define PL353_NAND_ECC_VALID_MASK  0x40
> > +
> > +struct pl353_nfc_op {
> > +   u32 cmnds[4];
> > +   u32 thirdrow;
> > +   u32 type;
> > +   u32 end_cmd;
> > +   u32 addrs;
> > +   bool wait;
> > +   u32 len;
> > +   u32 naddrs;
> > +   unsigned int data_instr_idx;
> > +   const struct nand_op_instr *data_instr;
> > +   unsigned int rdy_timeout_ms;
> > +   unsigned int rdy_delay_ns;
> > +   unsigned int data_delay_ns;
> > +   unsigned int cle_ale_delay_ns;
> > +   u32 addr5;
> > +   u32 addr6;
> > +};
> > +
> > +/**
> > + * struct pl353_nand_info - Defines the NAND flash driver instance
> > + * @chip:          NAND chip information structure
> > + * @nand_base:             Virtual address of the NAND flash device
> > + * @end_cmd_pending:       End command is pending
> > + * @end_cmd:               End command
> > + * @row_addr_cycles:       Row address cycles
> > + * @col_addr_cycles:       Column address cycles
> > + * @address:               Page address
> > + * @cmd_pending:   More command is needed
> 
> I'm still not ok with this structure.
> 
> The NAND controller entries must be separated from the NAND chip's. You can 
> get some
> inspiration from marvell_nand.c or sunxi_nand.c.
Ok, Will check that.
> 
> > + */
> > +struct pl353_nand_info {
> > +   struct nand_chip chip;
> > +   struct device *dev;
> > +   void __iomem *nand_base;
> > +   unsigned long end_cmd_pending;
> > +   unsigned long end_cmd;
> > +   u8 addr_cycles;
> > +   u32 address;
> > +   u32 cmd_pending;
> > +   struct completion complete;
> > +   struct clk *mclk;
> > +
> 
> Extra space
Ok, will correct it.
> 
> > +};
> > +
> > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> > +                                struct mtd_oob_region *oobregion) {
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +   if (section >= chip->ecc.steps)
> > +           return -ERANGE;
> > +
> > +   oobregion->offset = (section * chip->ecc.bytes);
> > +   oobregion->length = chip->ecc.bytes;
> > +
> > +   return 0;
> > +}
> > +
> > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> > +                                 struct mtd_oob_region *oobregion) {
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +   if (section >= chip->ecc.steps)
> > +           return -ERANGE;
> > +
> > +   oobregion->offset = (section * chip->ecc.bytes) + 8;
> > +   oobregion->length = 8;
> > +
> > +   return 0;
> > +}
> > +
> > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> > +   .ecc = pl353_ecc_ooblayout16_ecc,
> > +   .free = pl353_ecc_ooblayout16_free,
> > +};
> > +
> > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> > +                                struct mtd_oob_region *oobregion) {
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +   if (section >= chip->ecc.steps)
> > +           return -ERANGE;
> > +
> > +   oobregion->offset = (section * chip->ecc.bytes) + 52;
> > +   oobregion->length = chip->ecc.bytes;
> > +
> > +   return 0;
> > +}
> > +
> > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> > +                                 struct mtd_oob_region *oobregion) {
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +   if (section)
> > +           return -ERANGE;
> > +
> > +   if (section >= chip->ecc.steps)
> > +           return -ERANGE;
> > +
> > +   oobregion->offset = (section * chip->ecc.bytes) + 2;
> > +   oobregion->length = 50;
> > +
> > +   return 0;
> > +}
> > +
> > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> > +   .ecc = pl353_ecc_ooblayout64_ecc,
> > +   .free = pl353_ecc_ooblayout64_free,
> > +};
> > +
> > +/* Generic flash bbt decriptors */
> > +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; static u8
> > +mirror_pattern[] = { '1', 't', 'b', 'B' };
> > +
> > +static struct nand_bbt_descr bbt_main_descr = {
> > +   .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> > +           | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > +   .offs = 4,
> > +   .len = 4,
> > +   .veroffs = 20,
> > +   .maxblocks = 4,
> > +   .pattern = bbt_pattern
> > +};
> > +
> > +static struct nand_bbt_descr bbt_mirror_descr = {
> > +   .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> > +           | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > +   .offs = 4,
> > +   .len = 4,
> > +   .veroffs = 20,
> > +   .maxblocks = 4,
> > +   .pattern = mirror_pattern
> > +};
> > +
> > +/**
> > + * pl353_nand_read_data_op - read chip data into buffer
> > + * @chip:  Pointer to the NAND chip info structure
> > + * @in:            Pointer to the buffer to store read data
> > + * @len:   Number of bytes to read
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_read_data_op(struct nand_chip *chip,
> > +                              u8 *in,
> > +                              unsigned int len)
> > +{
> > +   int i;
> > +
> > +   if (IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> > +       IS_ALIGNED(len, sizeof(uint32_t))) {
> > +           u32 *ptr = (u32 *)in;
> > +
> > +           len /= 4;
> > +           for (i = 0; i < len; i++)
> > +                   ptr[i] = readl(chip->IO_ADDR_R);
> 
> Please do not use IO_ADDR_R/W, these chip structure entries are deprecated 
> and might be
> removed anytime soon. Removing them will simplify a lot all the functions 
> where you do kind
> of unreadable pointer operations around these value. This is really bad and I 
> already told you
> about it.
> 
Ok, sorry for that, I will update it.
> Please fix this and then I'll review the rest.
Sure.
> 
> > +   } else {
> > +           for (i = 0; i < len; i++)
> > +                   in[i] = readb(chip->IO_ADDR_R);
> > +   }
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_buf - write buffer to chip
> > + * @mtd:   Pointer to the mtd info structure
> > + * @buf:   Pointer to the buffer to store write data
> > + * @len:   Number of bytes to write
> > + */
> > +static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf,
> > +                                int len)
> > +{
> > +   int i;
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +   if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> > +       IS_ALIGNED(len, sizeof(uint32_t))) {
> > +           u32 *ptr = (u32 *)buf;
> > +
> > +           len /= 4;
> > +           for (i = 0; i < len; i++)
> > +                   writel(ptr[i], chip->IO_ADDR_W);
> > +   } else {
> > +           for (i = 0; i < len; i++)
> > +                   writeb(buf[i], chip->IO_ADDR_W);
> > +   }
> > +}
> > +
> > +/**
> > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> > + * @mtd:   Pointer to the mtd_info structure
> > + * @data:  Pointer to the page data
> > + * @ecc:   Pointer to the ECC buffer where ECC data needs to be stored
> > + *
> > + * This function retrieves the Hardware ECC data from the controller
> > +and returns
> > + * ECC data back to the MTD subsystem.
> > + *
> > + * Return: 0 on success or error value on failure
> > + */
> > +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
> > +                                 const u8 *data, u8 *ecc)
> > +{
> > +   u32 ecc_value;
> > +   u8 ecc_reg, ecc_byte, ecc_status;
> > +   unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> 
> New line
Ok. I will correct it.
> 
> > +   /* Wait till the ECC operation is complete or timeout */
> > +   do {
> > +           if (pl353_smc_ecc_is_busy())
> > +                   cpu_relax();
> > +           else
> > +                   break;
> > +   } while (!time_after_eq(jiffies, timeout));
> > +
> > +   if (time_after_eq(jiffies, timeout)) {
> > +           pr_err("%s timed out\n", __func__);
> > +           return -ETIMEDOUT;
> > +   }
> > +
> > +   for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
> > +           /* Read ECC value for each block */
> > +           ecc_value = pl353_smc_get_ecc_val(ecc_reg);
> > +           ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> > +           /* ECC value valid */
> > +           if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> > +                   for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
> > +                           /* Copy ECC bytes to MTD buffer */
> > +                           *ecc = ~ecc_value & 0xFF;
> > +                           ecc_value = ecc_value >> 8;
> > +                           ecc++;
> > +                   }
> > +           } else {
> > +                   pr_warn("%s status failed\n", __func__);
> > +                   return -1;
> > +           }
> > +   }
> 
> New line
Ok. I will remove it.
> 
> > +   return 0;
> > +}
> > +
> > +/**
> > + * onehot - onehot function
> > + * @value: Value to check for onehot
> > + *
> > + * This function checks whether a value is onehot or not.
> > + * onehot is if and only if onebit is set.
> > + *
> > + * Return: 1 if it is onehot else 0
> > + */
> > +static bool onehot(unsigned short value) {
> > +   return (value & (value - 1)) == 0;
> 
> Please use something from bitmap.c or bitops.h to do this.
Ok.
> 
> > +}
> > +
> > +/**
> > + * pl353_nand_correct_data - ECC correction function
> > + * @mtd:   Pointer to the mtd_info structure
> > + * @buf:   Pointer to the page data
> > + * @read_ecc:      Pointer to the ECC value read from spare data area
> > + * @calc_ecc:      Pointer to the calculated ECC value
> > + *
> > + * This function corrects the ECC single bit errors & detects 2-bit errors.
> > + *
> > + * Return: 0 if no ECC errors found
> > + *         1 if single bit error found and corrected.
> > + *         -1 if multiple uncorrectable ECC errors found.
> > + */
> > +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char 
> > *buf,
> > +                              unsigned char *read_ecc,
> > +                              unsigned char *calc_ecc)
> > +{
> > +   unsigned char bit_addr;
> > +   unsigned int byte_addr;
> > +   unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> > +   unsigned short calc_ecc_lower, calc_ecc_upper;
> > +
> > +   read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
> > +   read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
> > +
> > +   calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
> > +   calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
> > +
> > +   ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> > +   ecc_even = read_ecc_upper ^ calc_ecc_upper;
> > +
> > +   /* no error */
> > +   if (!ecc_odd && !ecc_even)
> > +           return 0;
> > +
> > +   if (ecc_odd == (~ecc_even & 0xfff)) {
> > +           /* bits [11:3] of error code is byte offset */
> > +           byte_addr = (ecc_odd >> 3) & 0x1ff;
> 
> You might want to define these values.
Ok
> 
> > +           /* bits [2:0] of error code is bit offset */
> > +           bit_addr = ecc_odd & 0x7;
> 
> Same here.
Ok
> 
> > +           /* Toggling error bit */
> > +           buf[byte_addr] ^= (BIT(bit_addr));
> > +           return 1;
> > +   }
> 
> New line
Ok. I will correct it.
> 
> > +   /* one error in parity */
> > +   if (onehot(ecc_odd | ecc_even) == 1)
> > +           return 1;
> > +
> > +   /* Uncorrectable error */
> > +   return -1;
> > +}
> > +
> > +static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip *chip,
> > +                        unsigned long timeout)
> > +{
> > +   if (timeout)
> > +           timeout = jiffies + msecs_to_jiffies(timeout);
> > +   else
> > +           timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
> > +
> > +   do {
> > +           if (chip->dev_ready(mtd))
> > +                   break;
> > +           cpu_relax();
> > +   } while (!time_after_eq(jiffies, timeout));
> 
> Isn't this a nand_wait_ready() equivalent?
Let me check.
> 
> > +
> > +   if (time_after_eq(jiffies, timeout)) {
> > +           pr_err("%s timed out\n", __func__);
> > +           return -1;
> > +   }
> > +
> > +   return 0;
> > +}
> > +
> > +static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip,
> > +                         int page, int column, int start_cmd, int end_cmd,
> > +                         bool read)
> > +{
> > +   unsigned long data_phase_addr;
> > +   u32 end_cmd_valid = 0;
> > +   void __iomem *cmd_addr;
> > +   unsigned long cmd_phase_addr = 0, cmd_data = 0;
> > +
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +
> > +   end_cmd_valid = read ? 1 : 0;
> > +
> > +   cmd_phase_addr = (unsigned long __force)xnfc->nand_base +
> > +                    ((xnfc->addr_cycles
> > +                    << ADDR_CYCLES_SHIFT) |
> > +                    (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +                    (COMMAND_PHASE) |
> > +                    (end_cmd << END_CMD_SHIFT) |
> > +                    (start_cmd << START_CMD_SHIFT));
> > +   cmd_addr = (void __iomem * __force)cmd_phase_addr;
> > +
> > +   /* Get the data phase address */
> > +   data_phase_addr = (unsigned long __force)xnfc->nand_base +
> > +                     ((0x0 << CLEAR_CS_SHIFT) |
> > +                     (0 << END_CMD_VALID_SHIFT) |
> > +                     (DATA_PHASE) |
> > +                     (end_cmd << END_CMD_SHIFT) |
> > +                     (0x0 << ECC_LAST_SHIFT));
> > +
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +   chip->IO_ADDR_W = chip->IO_ADDR_R;
> > +   if (chip->options & NAND_BUSWIDTH_16)
> > +           column /= 2;
> > +   cmd_data = column;
> > +   if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > +           cmd_data |= page << 16;
> > +           /* Another address cycle for devices > 128MiB */
> > +           if (chip->options & NAND_ROW_ADDR_3) {
> > +                   writel_relaxed(cmd_data, cmd_addr);
> > +                   cmd_data = (page >> 16);
> > +           }
> > +   } else {
> > +           cmd_data |= page << 8;
> > +   }
> > +
> > +   writel_relaxed(cmd_data, cmd_addr);
> > +}
> > +
> > +/**
> > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read 
> > function
> > + * @mtd:   Pointer to the mtd info structure
> > + * @chip:  Pointer to the NAND chip info structure
> > + * @page:  Page number to read
> > + *
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip 
> > *chip,
> > +                          int page)
> > +{
> > +   unsigned long data_phase_addr;
> > +   u8 *p;
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +
> > +   chip->pagebuf = -1;
> > +   if (mtd->writesize < PL353_NAND_ECC_SIZE)
> > +           return 0;
> > +
> > +   pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0,
> > +                     NAND_CMD_READSTART, 1);
> > +
> > +   ndelay(100);
> > +   pl353_dev_timeout(mtd, chip, 0);
> > +
> > +   p = chip->oob_poi;
> > +   pl353_nand_read_data_op(chip, p,
> > +                           (mtd->oobsize -
> > +                           PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +   pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write
> function
> > + * @mtd:   Pointer to the mtd info structure
> > + * @chip:  Pointer to the NAND chip info structure
> > + * @page:  Page number to write
> > + *
> > + * Return: Zero on success and EIO on failure
> > + */
> > +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip 
> > *chip,
> > +                           int page)
> > +{
> > +   const u8 *buf = chip->oob_poi;
> > +   unsigned long data_phase_addr;
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +   u32 addrcycles = 0;
> > +
> > +   chip->pagebuf = -1;
> > +   addrcycles = xnfc->addr_cycles;
> > +   pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN,
> > +                     NAND_CMD_PAGEPROG, 0);
> > +   ndelay(100);
> > +   pl353_nand_write_data_op(mtd, buf,
> > +                            (mtd->oobsize -
> > +                            PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> > +   pl353_nand_write_data_op(mtd, buf,
> PL353_NAND_LAST_TRANSFER_LENGTH);
> > +   nand_wait_ready(mtd);
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> > + * @mtd:           Pointer to the mtd info structure
> > + * @chip:          Pointer to the NAND chip info structure
> > + * @buf:           Pointer to the data buffer
> > + * @oob_required:  Caller requires OOB data read to chip->oob_poi
> > + * @page:          Page number to read
> > + *
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_read_page_raw(struct mtd_info *mtd,
> > +                               struct nand_chip *chip,
> > +                               u8 *buf, int oob_required, int page) {
> > +   unsigned long data_phase_addr;
> > +   u8 *p;
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +
> > +   pl353_nand_read_data_op(chip, buf, mtd->writesize);
> > +   p = chip->oob_poi;
> > +   pl353_nand_read_data_op(chip, p,
> > +                           (mtd->oobsize -
> > +                           PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +
> > +   pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_page_raw - [Intern] raw page write function
> > + * @mtd:           Pointer to the mtd info structure
> > + * @chip:          Pointer to the NAND chip info structure
> > + * @buf:           Pointer to the data buffer
> > + * @oob_required:  Caller requires OOB data read to chip->oob_poi
> > + * @page:          Page number to write
> > + *
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_write_page_raw(struct mtd_info *mtd,
> > +                                struct nand_chip *chip,
> > +                                const u8 *buf, int oob_required,
> > +                                int page)
> > +{
> > +   unsigned long data_phase_addr;
> > +   u8 *p;
> > +
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +
> > +   pl353_nand_write_data_op(mtd, buf, mtd->writesize);
> > +   p = chip->oob_poi;
> > +   pl353_nand_write_data_op(mtd, p,
> > +                            (mtd->oobsize -
> > +                            PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> > +
> > +   pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * nand_write_page_hwecc - Hardware ECC based page write function
> > + * @mtd:           Pointer to the mtd info structure
> > + * @chip:          Pointer to the NAND chip info structure
> > + * @buf:           Pointer to the data buffer
> > + * @oob_required:  Caller requires OOB data read to chip->oob_poi
> > + * @page:          Page number to write
> > + *
> > + * This functions writes data and hardware generated ECC values in to the 
> > page.
> > + *
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
> > +                                  struct nand_chip *chip,
> > +                                  const u8 *buf, int oob_required,
> > +                                  int page)
> > +{
> > +   int eccsize = chip->ecc.size;
> > +   int eccsteps = chip->ecc.steps;
> > +   u8 *ecc_calc = chip->ecc.calc_buf;
> > +   u8 *oob_ptr;
> > +   const u8 *p = buf;
> > +   u32 ret;
> > +   unsigned long data_phase_addr;
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +
> > +   pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
> > +                     NAND_CMD_PAGEPROG, 0);
> > +   ndelay(100);
> > +   for ( ; (eccsteps - 1); eccsteps--) {
> > +           pl353_nand_write_data_op(mtd, p, eccsize);
> > +           p += eccsize;
> > +   }
> > +   pl353_nand_write_data_op(mtd, p,
> > +                            (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   /* Set ECC Last bit to 1 */
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_ECC_LAST;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> > +   pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   p = buf;
> > +   chip->ecc.calculate(mtd, p, &ecc_calc[0]);
> > +
> > +   /* Wait for ECC to be calculated and read the error values */
> > +   ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> > +                                    0, chip->ecc.total);
> > +   if (ret)
> > +           return ret;
> > +   /* Clear ECC last bit */
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> > +
> > +   /* Write the spare area with ECC bytes */
> > +   oob_ptr = chip->oob_poi;
> > +   pl353_nand_write_data_op(mtd, oob_ptr,
> > +                            (mtd->oobsize -
> > +                            PL353_NAND_LAST_TRANSFER_LENGTH));
> > +
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
> > +   oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +   pl353_nand_write_data_op(mtd, oob_ptr,
> > +PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   /*
> > +    * Apply this short delay always to ensure that we do wait tWB in any
> > +    * case on any machine.
> > +    */
> > +   ndelay(100);
> 
> Please use sdr timings tWB_min value
Ok.
> 
> > +   nand_wait_ready(mtd);
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> > + * @mtd:           Pointer to the mtd info structure
> > + * @chip:          Pointer to the NAND chip info structure
> > + * @buf:           Pointer to the buffer to store read data
> > + * @oob_required:  Caller requires OOB data read to chip->oob_poi
> > + * @page:          Page number to read
> > + *
> > + * This functions reads data and checks the data integrity by
> > +comparing hardware
> > + * generated ECC values and read ECC values from spare area.
> > + *
> > + * Return: 0 always and updates ECC operation status in to MTD structure
> > + */
> > +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
> > +                                 struct nand_chip *chip,
> > +                                 u8 *buf, int oob_required, int page) {
> > +   int i, stat, eccsize = chip->ecc.size;
> > +   int eccbytes = chip->ecc.bytes;
> > +   int eccsteps = chip->ecc.steps;
> > +   u8 *p = buf;
> > +   u8 *ecc_calc = chip->ecc.calc_buf;
> > +   u8 *ecc = chip->ecc.code_buf;
> > +   unsigned int max_bitflips = 0;
> > +   u8 *oob_ptr;
> > +   u32 ret;
> > +   unsigned long data_phase_addr;
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
> > +
> > +   pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
> > +                     NAND_CMD_READSTART, 1);
> > +   ndelay(100);
> 
> What is this delay for?
We have seen failures with out this delay, with older code.
But i will check this by removing this delay, in this new driver.
> 
> > +   pl353_dev_timeout(mtd, chip, 0);
> > +
> > +   for ( ; (eccsteps - 1); eccsteps--) {
> > +           pl353_nand_read_data_op(chip, p, eccsize);
> > +           p += eccsize;
> > +   }
> > +   pl353_nand_read_data_op(chip, p,
> > +                           (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
> > +   p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   /* Set ECC Last bit to 1 */
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_ECC_LAST;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +   pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   /* Read the calculated ECC value */
> > +   p = buf;
> > +   chip->ecc.calculate(mtd, p, &ecc_calc[0]);
> > +
> > +   /* Clear ECC last bit */
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +
> > +   /* Read the stored ECC value */
> > +   oob_ptr = chip->oob_poi;
> > +   pl353_nand_read_data_op(chip, oob_ptr,
> > +                           (mtd->oobsize -
> > +                           PL353_NAND_LAST_TRANSFER_LENGTH));
> > +
> > +   /* de-assert chip select */
> > +   data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
> > +   data_phase_addr -= nand_offset;
> > +   data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +   data_phase_addr += nand_offset;
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +
> > +   oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +   pl353_nand_read_data_op(chip, oob_ptr,
> > +PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +   ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> > +                                    chip->ecc.total);
> > +   if (ret)
> > +           return ret;
> > +
> > +   eccsteps = chip->ecc.steps;
> > +   p = buf;
> > +
> > +   /* Check ECC error for all blocks and correct if it is correctable */
> > +   for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> > +           stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]);
> > +           if (stat < 0) {
> > +                   mtd->ecc_stats.failed++;
> > +           } else {
> > +                   mtd->ecc_stats.corrected += stat;
> > +                   max_bitflips = max_t(unsigned int, max_bitflips, stat);
> > +           }
> > +   }
> > +
> > +   return max_bitflips;
> > +}
> > +
> > +/**
> > + * pl353_nand_select_chip - Select the flash device
> > + * @mtd:   Pointer to the mtd info structure
> > + * @chip:  Pointer to the NAND chip info structure
> > + *
> > + * This function is empty as the NAND controller handles chip select
> > +line
> > + * internally based on the chip address passed in command and data phase.
> 
> So why aren't you saving the current chip/die for later use?
> 
> > + */
> > +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) {
> 
> You should probably save/restore timing registers somewhere now that you 
> support -
> >setup_data_interface().
Ok, let me try this.
> 
> > +}
> > +
> > +/* NAND framework ->exec_op() hooks and related helpers */ static
> > +void pl353_nfc_parse_instructions(struct nand_chip *chip,
> > +                                    const struct nand_subop *subop,
> > +                                    struct pl353_nfc_op *nfc_op)
> > +{
> > +   const struct nand_op_instr *instr = NULL;
> > +   unsigned int op_id, offset, naddrs;
> > +   int i, len;
> > +   const u8 *addrs;
> > +
> > +   memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> > +   for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> > +           nfc_op->len = nand_subop_get_data_len(subop, op_id);
> > +           len = nand_subop_get_data_len(subop, op_id);
> > +           instr = &subop->instrs[op_id];
> > +           //if (subop->ninstrs == 1)
> > +                   //nfc_op->cmnds[0] = -1;
> > +           switch (instr->type) {
> > +           case NAND_OP_CMD_INSTR:
> > +                   nfc_op->type = NAND_OP_CMD_INSTR;
> > +                   if (op_id)
> > +                           nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> > +                   else
> > +                           nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> > +                   nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > +                   break;
> > +
> > +           case NAND_OP_ADDR_INSTR:
> > +                   offset = nand_subop_get_addr_start_off(subop, op_id);
> > +                   naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> > +                   addrs = &instr->ctx.addr.addrs[offset];
> > +                   nfc_op->addrs = instr->ctx.addr.addrs[offset];
> > +                   for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
> > +                           nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> > +                                            (8 * i);
> > +                   }
> > +
> > +                   if (naddrs >= 5)
> > +                           nfc_op->addr5 = addrs[4];
> > +                   if (naddrs >= 6)
> > +                           nfc_op->addr6 = addrs[5];
> > +                   nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> > +                                                                op_id);
> > +                   nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > +                   break;
> > +
> > +           case NAND_OP_DATA_IN_INSTR:
> > +                   nfc_op->data_instr = instr;
> > +                   nfc_op->type = NAND_OP_DATA_IN_INSTR;
> > +                   nfc_op->data_instr_idx = op_id;
> > +                   nfc_op->data_delay_ns = instr->delay_ns;
> > +                   break;
> > +
> > +           case NAND_OP_DATA_OUT_INSTR:
> > +                   nfc_op->data_instr = instr;
> > +                   nfc_op->type = NAND_OP_DATA_IN_INSTR;
> > +                   nfc_op->data_instr_idx = op_id;
> > +                   nfc_op->data_delay_ns = instr->delay_ns;
> > +                   break;
> > +
> > +           case NAND_OP_WAITRDY_INSTR:
> > +                   nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> > +                   nfc_op->rdy_delay_ns = instr->delay_ns;
> > +                   nfc_op->wait = true;
> > +                   break;
> > +           }
> > +   }
> > +}
> > +
> > +static void cond_delay(unsigned int ns) {
> > +   if (!ns)
> > +           return;
> > +
> > +   if (ns < 10000)
> > +           ndelay(ns);
> > +   else
> > +           udelay(DIV_ROUND_UP(ns, 1000));
> > +}
> > +
> > +/**
> > + * pl353_nand_cmd_function - Send command to NAND device
> > + * @chip:  Pointer to the NAND chip info structure
> > + * @subop: Pointer to array of instructions
> > + * Return: Always return zero
> > + */
> > +static int pl353_nand_cmd_function(struct nand_chip *chip,
> > +                              const struct nand_subop *subop) {
> > +   struct mtd_info *mtd = nand_to_mtd(chip);
> > +   const struct nand_op_instr *instr;
> > +   struct pl353_nfc_op nfc_op = {};
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   void __iomem *cmd_addr;
> > +   unsigned long cmd_data = 0, end_cmd_valid = 0;
> > +   unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> > +   unsigned int op_id, len, offset;
> > +   bool reading;
> > +
> > +   pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> > +   instr = nfc_op.data_instr;
> > +   op_id = nfc_op.data_instr_idx;
> > +   len = nand_subop_get_data_len(subop, op_id);
> > +   offset = nand_subop_get_data_start_off(subop, op_id);
> > +
> > +   pl353_smc_clr_nand_int();
> > +   /* Get the command phase address */
> > +   if (nfc_op.cmnds[1] != 0) {
> > +           if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> > +                   end_cmd_valid = 0;
> > +           else
> > +                   end_cmd_valid = 1;
> > +           end_cmd = nfc_op.cmnds[1];
> > +   }  else {
> > +           end_cmd = 0x0;
> > +   }
> > +   cmd_phase_addr = (unsigned long __force)xnfc->nand_base +
> > +                    ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> > +                    (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +                    (COMMAND_PHASE) |
> > +                    (end_cmd << END_CMD_SHIFT) |
> > +                    (nfc_op.cmnds[0] << START_CMD_SHIFT));
> > +
> > +   cmd_addr = (void __iomem * __force)cmd_phase_addr;
> > +   /* Get the data phase address */
> > +   end_cmd_valid = 0;
> > +
> > +   data_phase_addr = (unsigned long __force)xnfc->nand_base +
> > +                     ((0x0 << CLEAR_CS_SHIFT) |
> > +                     (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +                     (DATA_PHASE) |
> > +                     (end_cmd << END_CMD_SHIFT) |
> > +                     (0x0 << ECC_LAST_SHIFT));
> > +   chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
> > +   chip->IO_ADDR_W = chip->IO_ADDR_R;
> > +   /* Command phase AXI Read & Write */
> > +   if (nfc_op.naddrs >= 5) {
> > +           if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > +                   cmd_data = nfc_op.addrs;
> > +                   /* Another address cycle for devices > 128MiB */
> > +                   if (chip->options & NAND_ROW_ADDR_3) {
> > +                           writel_relaxed(cmd_data, cmd_addr);
> > +                           cmd_data = nfc_op.addr5;
> > +                           if (nfc_op.naddrs >= 6)
> > +                                   cmd_data |= (nfc_op.addr6 << 8);
> > +                   }
> > +           }
> > +   }  else {
> > +           if (nfc_op.addrs != -1) {
> > +                   int column = nfc_op.addrs;
> > +                   /*
> > +                    * Change read/write column, read id etc
> > +                    * Adjust columns for 16 bit bus width
> > +                    */
> > +                   if ((chip->options & NAND_BUSWIDTH_16) &&
> > +                       (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> > +                           nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> > +                           nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> > +                           nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> > +                           column >>= 1;
> > +                   }
> > +                   cmd_data = column;
> > +           }
> > +   }
> > +   writel_relaxed(cmd_data, cmd_addr);
> > +   ndelay(100);
> > +
> > +   cond_delay(nfc_op.cle_ale_delay_ns);
> > +   if (!nfc_op.data_instr) {
> > +           msleep(nfc_op.rdy_timeout_ms);
> > +           cond_delay(nfc_op.rdy_delay_ns);
> > +           return 0;
> > +   }
> > +
> > +   reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> > +
> > +   if (!reading) {
> > +           if (nfc_op.cmnds[0] == NAND_CMD_SEQIN &&
> > +               nfc_op.cmnds[1] == NAND_CMD_PAGEPROG) {
> > +                   pl353_nand_write_page_raw(mtd, chip,
> > +                                             instr->ctx.data.buf.out, 0,
> > +                                             nfc_op.addrs);
> > +           } else {
> > +                   pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out,
> > +                                            len);
> > +           }
> > +           if (nfc_op.rdy_timeout_ms)
> > +                   pl353_dev_timeout(mtd, chip, nfc_op.rdy_timeout_ms);
> > +           cond_delay(nfc_op.rdy_delay_ns);
> > +
> > +   }
> > +
> > +   else if (reading) {
> > +           if (nfc_op.rdy_timeout_ms)
> > +                   pl353_dev_timeout(mtd, chip, nfc_op.rdy_timeout_ms);
> > +           cond_delay(nfc_op.rdy_delay_ns);
> > +           pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len);
> > +   }
> > +
> > +   return 0;
> > +}
> > +
> > +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> > +   (NAND_OP_PARSER_PATTERN
> > +           (pl353_nand_cmd_function,
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +           NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > +           NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> > +           NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > +   NAND_OP_PARSER_PATTERN
> > +           (pl353_nand_cmd_function,
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +           NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +           NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> > +           NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > +   NAND_OP_PARSER_PATTERN
> > +           (pl353_nand_cmd_function,
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +           NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +           NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> > +   NAND_OP_PARSER_PATTERN
> > +           (pl353_nand_cmd_function,
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +           NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> > +           NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +           NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> > +   NAND_OP_PARSER_PATTERN
> > +           (pl353_nand_cmd_function,
> > +           NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> > +   );
> > +
> > +static int pl353_nfc_exec_op(struct nand_chip *chip,
> > +                        const struct nand_operation *op,
> > +                        bool check_only)
> > +{
> > +   return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> > +                                         op, check_only);
> > +}
> > +
> > +/**
> > + * pl353_nand_device_ready - Check device ready/busy line
> > + * @mtd:   Pointer to the mtd_info structure
> > + *
> > + * Return: 0 on busy or 1 on ready state
> > + */
> > +static int pl353_nand_device_ready(struct mtd_info *mtd) {
> > +   if (pl353_smc_get_nand_int_status_raw()) {
> > +           pl353_smc_clr_nand_int();
> > +           return 1;
> > +   }
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> > + * @mtd:   Pointer to the mtd_info structure
> > + * @ecc:   Pointer to ECC control structure
> > + * @ecc_mode:      ondie ecc status
> > + *
> > + * This function initializes the ecc block and functional pointers as
> > +per the
> > + * ecc mode
> > + */
> > +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl 
> > *ecc,
> > +                           int ecc_mode)
> > +{
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   u32 err = 0;
> > +
> > +   if (ecc_mode == NAND_ECC_ON_DIE) {
> > +           pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> > +           /*
> > +            * On-Die ECC spare bytes offset 8 is used for ECC codes
> > +            * Use the BBT pattern descriptors
> > +            */
> > +           chip->bbt_td = &bbt_main_descr;
> > +           chip->bbt_md = &bbt_mirror_descr;
> > +           bitmap_set(chip->parameters.get_feature_list,
> > +                      ONFI_FEATURE_ON_DIE_ECC,
> ONFI_FEATURE_ON_DIE_ECC_EN);
> > +           bitmap_set(chip->parameters.set_feature_list,
> > +                      ONFI_FEATURE_ON_DIE_ECC,
> ONFI_FEATURE_ON_DIE_ECC_EN);
> > +   } else {
> > +           ecc->read_oob = pl353_nand_read_oob;
> > +           ecc->write_oob = pl353_nand_write_oob;
> > +
> > +           ecc->mode = NAND_ECC_HW;
> > +           /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> > +           ecc->bytes = 3;
> > +           ecc->strength = 1;
> > +           ecc->calculate = pl353_nand_calculate_hwecc;
> > +           ecc->correct = pl353_nand_correct_data;
> > +           ecc->read_page = pl353_nand_read_page_hwecc;
> > +           ecc->size = PL353_NAND_ECC_SIZE;
> > +           ecc->write_page = pl353_nand_write_page_hwecc;
> > +           pl353_smc_set_ecc_pg_size(mtd->writesize);
> > +           switch (mtd->writesize) {
> > +           case SZ_512:
> > +           case SZ_1K:
> > +           case SZ_2K:
> > +                   pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> > +                   break;
> > +           default:
> > +                   /*
> > +                    * The software ECC routines won't work with the
> > +                    * SMC controller
> > +                    */
> > +                   ecc->calculate = nand_calculate_ecc;
> > +                   ecc->correct = nand_correct_data;
> > +                   ecc->size = 256;
> > +                   break;
> > +           }
> > +           if (mtd->writesize <= SZ_512)
> > +                   xnfc->addr_cycles = 1;
> > +           else
> > +                   xnfc->addr_cycles = 2;
> > +
> > +           if (chip->options & NAND_ROW_ADDR_3)
> > +                   xnfc->addr_cycles += 3;
> > +           else
> > +                   xnfc->addr_cycles += 2;
> > +
> > +           if (mtd->oobsize == 16) {
> > +                   mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> > +           } else if (mtd->oobsize == 64) {
> > +                   mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> > +           } else {
> > +                   err = ENXIO;
> 
> Errors are always negative values
Ok, will update.
> 
> > +                   dev_err(xnfc->dev, "Unsupported oob Layout\n");
> > +           }
> > +   }
> 
> Space
Ok.
> 
> > +   return err;
> > +}
> > +static int pl353_setup_data_interface(struct mtd_info *mtd, int csline,
> > +                                  const struct nand_data_interface *conf) {
> > +   struct nand_chip *chip = mtd_to_nand(mtd);
> > +   struct pl353_nand_info *xnfc =
> > +           container_of(chip, struct pl353_nand_info, chip);
> > +   const struct nand_sdr_timings *sdr;
> > +   u32 timigs[7], mckperiodps;
> 
> s/timigs/timings/
Ok will correct it.
> 
> Please use C coding style with '_' instead of a bulk of characters like 
> mckperiodps.
Ok.
> 
> > +
> > +   if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> > +           return -EINVAL;
> 
> Why?
It is similar to 
if (chipnr < 0)
        return 0;
hence written like that.
Also if I didn't do that, then probe is failing.
Am I missing some thing?
> 
> > +
> > +   sdr = nand_get_sdr_timings(conf);
> > +   if (IS_ERR(sdr))
> > +           return PTR_ERR(sdr);
> > +   /*
> > +    * SDR timings are given in pico-seconds while NFC timings must be
> > +    * expressed in NAND controller clock cycles.
> > +    */
> > +   mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
> > +   mckperiodps *= 1000;
> > +   timigs[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> > +   timigs[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> > +   timigs[2] = DIV_ROUND_UP(sdr->tREA_max, mckperiodps);
> > +   timigs[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> > +   timigs[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> > +   timigs[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> > +   timigs[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> > +   pl353_smc_set_cycles(timigs[0], timigs[1], timigs[2], timigs[3],
> > +                        timigs[4], timigs[5], timigs[6]);
> 
> You could just give an array of timings instead of 7 values?
Yes, I will update it.
> 
> This would also simplify the code in the smc driver.
Yes.
> 
> > +
> > +   return 0;
> > +}
> > +/**
> > + * pl353_nand_probe - Probe method for the NAND driver
> > + * @pdev:  Pointer to the platform_device structure
> > + *
> > + * This function initializes the driver data structures and the hardware.
> > + *
> > + * Return: 0 on success or error value on failure
> > + */
> > +static int pl353_nand_probe(struct platform_device *pdev) {
> > +   struct pl353_nand_info *xnfc;
> > +   struct mtd_info *mtd;
> > +   struct nand_chip *chip;
> > +   struct resource *res;
> > +   struct device_node *np;
> > +   u32 ret;
> > +
> > +   xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> > +   if (!xnfc)
> > +           return -ENOMEM;
> > +   xnfc->dev = &pdev->dev;
> > +   /* Map physical address of NAND flash */
> > +   res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> > +   xnfc->nand_base = devm_ioremap_resource(xnfc->dev, res);
> > +   if (IS_ERR(xnfc->nand_base))
> > +           return PTR_ERR(xnfc->nand_base);
> > +
> > +   chip = &xnfc->chip;
> > +   mtd = nand_to_mtd(chip);
> > +   chip->exec_op = pl353_nfc_exec_op;
> > +   nand_set_controller_data(chip, xnfc);
> > +   mtd->priv = chip;
> > +   mtd->owner = THIS_MODULE;
> > +   if (!mtd->name) {
> > +           /*
> > +            * If the new bindings are used and the bootloader has not been
> > +            * updated to pass a new mtdparts parameter on the cmdline, you
> > +            * should define the following property in your NAND node, ie:
> > +            *
> > +            *      label = "pl353-nand";
> > +            *
> > +            * This way, mtd->name will be set by the core when
> > +            * nand_set_flash_node() is called.
> > +            */
> > +           mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> > +                                      "%s", PL353_NAND_DRIVER_NAME);
> > +           if (!mtd->name) {
> > +                   dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> > +                   return -ENOMEM;
> > +           }
> > +   }
> > +   nand_set_flash_node(chip, xnfc->dev->of_node);
> > +
> > +   /* Set address of NAND IO lines */
> > +   chip->IO_ADDR_R = xnfc->nand_base;
> > +   chip->IO_ADDR_W = xnfc->nand_base;
> > +   /* Set the driver entry points for MTD */
> > +   chip->dev_ready = pl353_nand_device_ready;
> > +   chip->select_chip = pl353_nand_select_chip;
> > +   /* If we don't set this delay driver sets 20us by default */
> > +   np = of_get_next_parent(xnfc->dev->of_node);
> > +   xnfc->mclk = of_clk_get(np, 0);
> > +   if (IS_ERR(xnfc->mclk)) {
> > +           dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> > +           return PTR_ERR(xnfc->mclk);
> > +   }
> > +   chip->chip_delay = 30;
> > +   /* Set the device option and flash width */
> > +   chip->options = NAND_BUSWIDTH_AUTO;
> > +   chip->bbt_options = NAND_BBT_USE_FLASH;
> > +   platform_set_drvdata(pdev, xnfc);
> > +   chip->setup_data_interface = pl353_setup_data_interface;
> > +   /* first scan to find the device and get the page size */
> > +   if (nand_scan_ident(mtd, 1, NULL)) {
> > +           dev_err(xnfc->dev, "nand_scan_ident for NAND failed\n");
> > +           return -ENXIO;
> > +   }
> > +   ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> > +   if (chip->options & NAND_BUSWIDTH_16)
> > +           pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> > +   /* second phase scan */
> > +   if (nand_scan_tail(mtd)) {
> > +           dev_err(xnfc->dev, "nand_scan_tail for NAND failed\n");
> > +           return -ENXIO;
> > +   }
> > +
> > +   mtd_device_register(mtd, NULL, 0);
> 
> Check the returned code
Ok.
> 
> > +
> > +   return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_remove - Remove method for the NAND driver
> > + * @pdev:  Pointer to the platform_device structure
> > + *
> > + * This function is called if the driver module is being unloaded. It
> > +frees all
> > + * resources allocated to the device.
> > + *
> > + * Return: 0 on success or error value on failure
> > + */
> > +static int pl353_nand_remove(struct platform_device *pdev) {
> > +   struct pl353_nand_info *xnfc = platform_get_drvdata(pdev);
> > +   struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> > +
> > +   /* Release resources, unregister device */
> > +   nand_release(mtd);
> 
> What about MTD core deregistration?
nand_release(), it self will do that.
> 
> > +
> > +   return 0;
> > +}
> > +
> > +/* Match table for device tree binding */ static const struct
> > +of_device_id pl353_nand_of_match[] = {
> > +   { .compatible = "arm,pl353-nand-r2p1" },
> > +   {},
> > +};
> > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> > +
> > +/*
> > + * pl353_nand_driver - This structure defines the NAND subsystem
> > +platform driver  */ static struct platform_driver pl353_nand_driver =
> > +{
> > +   .probe          = pl353_nand_probe,
> > +   .remove         = pl353_nand_remove,
> > +   .driver         = {
> > +           .name   = PL353_NAND_DRIVER_NAME,
> > +           .of_match_table = pl353_nand_of_match,
> > +   },
> > +};
> > +
> > +module_platform_driver(pl353_nand_driver);
> > +
> > +MODULE_AUTHOR("Xilinx, Inc.");
> > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> > +MODULE_LICENSE("GPL");
> 
> Thanks for your efforts,
> Miquèl

Thanks for the review.

Regards,
Naga Sureshkumar Relli.

Reply via email to