Compiler CSE and SSA GVN optimizations can cause the address dependency
of addresses returned by rcu_dereference to be lost when comparing those
pointers with either constants or previously loaded pointers.
Introduce ptr_eq() to compare two addresses while preserving the address
dependencies for later use of the address. It should be used when
comparing an address returned by rcu_dereference().
This is needed to prevent the compiler CSE and SSA GVN optimizations
from replacing the registers holding @a or @b based on their
equality, which does not preserve address dependencies and allows the
following misordering speculations:
- If @b is a constant, the compiler can issue the loads which depend
on @a before loading @a.
- If @b is a register populated by a prior load, weakly-ordered
CPUs can speculate loads which depend on @a before loading @a.
The same logic applies with @a and @b swapped.
The compiler barrier() is ineffective at fixing this issue.
It does not prevent the compiler CSE from losing the address dependency:
int fct_2_volatile_barriers(void)
{
int *a, *b;
do {
a = READ_ONCE(p);
asm volatile ("" : : : "memory");
b = READ_ONCE(p);
} while (a != b);
asm volatile ("" : : : "memory"); <----- barrier()
return *b;
}
With gcc 14.2 (arm64):
fct_2_volatile_barriers:
adrp x0, .LANCHOR0
add x0, x0, :lo12:.LANCHOR0
.L2:
ldr x1, [x0] <------ x1 populated by first load.
ldr x2, [x0]
cmp x1, x2
bne .L2
ldr w0, [x1] <------ x1 is used for access which should depend
on b.
ret
On weakly-ordered architectures, this lets CPU speculation use the
result from the first load to speculate "ldr w0, [x1]" before
"ldr x2, [x0]".
Based on the RCU documentation, the control dependency does not prevent
the CPU from speculating loads.
Suggested-by: Linus Torvalds <[email protected]>
Suggested-by: Boqun Feng <[email protected]>
Signed-off-by: Mathieu Desnoyers <[email protected]>
Reviewed-by: Boqun Feng <[email protected]>
Acked-by: "Paul E. McKenney" <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Sebastian Andrzej Siewior <[email protected]>
Cc: "Paul E. McKenney" <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Boqun Feng <[email protected]>
Cc: Alan Stern <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Neeraj Upadhyay <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Boqun Feng <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: Joel Fernandes <[email protected]>
Cc: Josh Triplett <[email protected]>
Cc: Uladzislau Rezki <[email protected]>
Cc: Steven Rostedt <[email protected]>
Cc: Lai Jiangshan <[email protected]>
Cc: Zqiang <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Waiman Long <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: [email protected]
Cc: Mateusz Guzik <[email protected]>
Cc: Gary Guo <[email protected]>
Cc: Jonas Oberhauser <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
---
include/linux/compiler.h | 62 ++++++++++++++++++++++++++++++++++++++++
1 file changed, 62 insertions(+)
diff --git a/include/linux/compiler.h b/include/linux/compiler.h
index 2df665fa2964..f26705c267e8 100644
--- a/include/linux/compiler.h
+++ b/include/linux/compiler.h
@@ -186,6 +186,68 @@ void ftrace_likely_update(struct ftrace_likely_data *f,
int val,
__asm__ ("" : "=r" (var) : "0" (var))
#endif
+/*
+ * Compare two addresses while preserving the address dependencies for
+ * later use of the address. It should be used when comparing an address
+ * returned by rcu_dereference().
+ *
+ * This is needed to prevent the compiler CSE and SSA GVN optimizations
+ * from replacing the registers holding @a or @b based on their
+ * equality, which does not preserve address dependencies and allows the
+ * following misordering speculations:
+ *
+ * - If @b is a constant, the compiler can issue the loads which depend
+ * on @a before loading @a.
+ * - If @b is a register populated by a prior load, weakly-ordered
+ * CPUs can speculate loads which depend on @a before loading @a.
+ *
+ * The same logic applies with @a and @b swapped.
+ *
+ * Return value: true if pointers are equal, false otherwise.
+ *
+ * The compiler barrier() is ineffective at fixing this issue. It does
+ * not prevent the compiler CSE from losing the address dependency:
+ *
+ * int fct_2_volatile_barriers(void)
+ * {
+ * int *a, *b;
+ *
+ * do {
+ * a = READ_ONCE(p);
+ * asm volatile ("" : : : "memory");
+ * b = READ_ONCE(p);
+ * } while (a != b);
+ * asm volatile ("" : : : "memory"); <-- barrier()
+ * return *b;
+ * }
+ *
+ * With gcc 14.2 (arm64):
+ *
+ * fct_2_volatile_barriers:
+ * adrp x0, .LANCHOR0
+ * add x0, x0, :lo12:.LANCHOR0
+ * .L2:
+ * ldr x1, [x0] <-- x1 populated by first load.
+ * ldr x2, [x0]
+ * cmp x1, x2
+ * bne .L2
+ * ldr w0, [x1] <-- x1 is used for access which should depend on
b.
+ * ret
+ *
+ * On weakly-ordered architectures, this lets CPU speculation use the
+ * result from the first load to speculate "ldr w0, [x1]" before
+ * "ldr x2, [x0]".
+ * Based on the RCU documentation, the control dependency does not
+ * prevent the CPU from speculating loads.
+ */
+static __always_inline
+int ptr_eq(const volatile void *a, const volatile void *b)
+{
+ OPTIMIZER_HIDE_VAR(a);
+ OPTIMIZER_HIDE_VAR(b);
+ return a == b;
+}
+
#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
/**
--
2.39.2